
pyfda Documentation
Release 0.5.2

Christian Muenker

Sep 19, 2023

Contents:

1 User Manual 3
1.1 Input Specs . 4
1.2 Input Coeffs . 6
1.3 Input P/Z . 9
1.4 Input Info . 9
1.5 Input Files . 11
1.6 Fixpoint Specs . 12
1.7 Plot H(f) . 13
1.8 Plot Phi(f) . 15
1.9 Plot tau(f) . 15
1.10 Plot P/Z . 16
1.11 Plot h[n] . 16
1.12 Plot 3D . 18
1.13 Customization . 20

2 Development 21
2.1 Software Organization . 21
2.2 Signalling: What’s up? . 22
2.3 Persistence: Where’s the data? . 23
2.4 Main Routines . 23
2.5 Libraries . 26
2.6 Package input_widgets . 26
2.7 Package plot_widgets . 31
2.8 Package filter_designs . 37
2.9 Package fixpoint_widgets . 37

3 Literature 41

4 API documentation 43
4.1 pyfda – Main package . 43

5 Indices and tables 45

Bibliography 47

Python Module Index 49

Index 51

i

ii

pyfda Documentation, Release 0.5.2

Version: 0.2.1

Contents: 1

pyfda Documentation, Release 0.5.2

2 Contents:

CHAPTER 1

User Manual

This part of the documentation is intended to describe the features of pyFDA that are relevant to a user (i.e.
non-developer).

Once you have started up pyFDA, you’ll see a screen similar to the following figure:

Fig. 1.1: Screenshot of pyfda

• Inputs widgets: On the left-hand side you see tabs for different input widgets, i.e. where you can enter and
modify parameters for the filter to be designed

• Plotting widgets can be selected on the right hand side of the application.

• Logger window is in the lower part of the plotting window, it can be resized or completely closed.
The content of the logger window can be selected, copied or cleared with a right mouse button context
menu.

The invidual windows can be resized using the handles (red dots).

3

pyfda Documentation, Release 0.5.2

1.1 Input Specs

Fig. 1.2 shows a typical view of the Specs tab where you can specify the kind of filter to be designed and its
specifications in the frequency domain:

• Response type (low pass, band pass, . . .)

• Filter type (IIR for a recursive filter with infinite impulse response or FIR for a non-recursive filter with
finite impulse response)

• Filter class (elliptic, . . .) allowing you to select the filter design algorithm

Fig. 1.2: Screenshot of specs input window

Not all combinations of design algorithms and response types are available - you won’t be offered unavailable
combinations and some fields may be greyed out.

1.1.1 Order

The order of the filter, i.e. the number of poles / zeros / delays is either specified manually or the minimum order
can be estimated for many filter algorithms to fulfill a set of given specifications.

1.1.2 Frequency Unit

In DSP, specifications and frequencies are expressed in different ways:

𝐹 =
𝑓

𝑓𝑆
or Ω =

2𝜋𝑓

𝑓𝑆
= 2𝜋𝐹

In pyfda, you can enter parameters as absolute frequency 𝑓 , as normalized frequency 𝐹 w.r.t. to the Sampling
Frequency 𝑓𝑆 or to the Nyquist Frequency 𝑓𝑁𝑦 = 𝑓𝑆/2 (Fig. 1.3):

4 Chapter 1. User Manual

pyfda Documentation, Release 0.5.2

Fig. 1.3: Displaying normalized frequencies

1.1.3 Amplitude Unit

Amplitude specification can be entered as V, dB or W; they are converted automatically. Conversion depends on
the filter type (IIR vs. FIR) and whether pass or stop band are specified. For details see the conversion functions
pyfda.pyfda_lib.unit2lin() and pyfda.pyfda_lib.lin2unit().

1.1.4 Background Info

Sampling Frequency

One of the most important parameters in a digital signal processing system is the sampling frequency 𝑓𝑆𝑓𝑆𝑓𝑆 , defining
the clock frequency with which the registers (flip-flops) in the system are updated. In a simple DSP system, the
clock frequency of ADC, digital filter and DAC might be identical:

Fig. 1.4: A simple signal processing system

Sometimes it makes sense to change the sampling frequency in the processing system e.g. to reduce the sampling
rate of an oversampling ADC or to increase the clocking frequency of an DAC to ease and improve reconstruction
of the analog signal.

1.1. Input Specs 5

pyfda Documentation, Release 0.5.2

Fig. 1.5: A signal processing system with multiple sampling frequencies

Aliasing and Nyquist Frequency

When the sampling frequency is too low, significant information is lost in the process and the signal cannot be
reconstructed without errors (forth image in Fig. 1.6) [Smith99]. This effect is called aliasing.

Fig. 1.6: Sampling with 𝑓𝑆 = 1000 Hz of sinusoids with 4 different frequencies

When sampling with 𝑓𝑆 , the maximum signal bandwidth 𝐵 that can represented and reconstructed without errors
is given by 𝐵 < 𝑓𝑆/2 = 𝑓𝑁𝑦 . This is also called the Nyquist frequency or bandwidth 𝑓𝑁𝑦 . Some filter design
tools and algorithms normalize frequencies w.r.t. to 𝑓𝑁𝑦 instead of 𝑓𝑆 .

1.1.5 Development

More info on this widget can be found under input_specs.

1.2 Input Coeffs

Fig. 1.7 shows a typical view of the b,a tab where you can view and edit the filter coefficients. Coefficient values
are updated every time you design a new filter or update the poles / zeros.

6 Chapter 1. User Manual

pyfda Documentation, Release 0.5.2

Fig. 1.7: Screenshot of the coefficients tab for floating point coefficients

In the top row, the display of the coefficients can be disabled as a coefficient update can be time consuming for
high order filters (𝑁 > 100).

1.2.1 Fixpoint

When the format is not float, the fixpoint options are displayed as in Fig. 1.8. Here, the format Binary has been
set.

Fixpoint Formats

Coefficients can be displayed in float format (the format returned by the filter design algorithm) with the maximum
precision. This is also called “Real World Value” (RWV).

Any other format (Binary, Hex, Decimal, CSD) is a fixpoint format with a fixed number of binary places which
triggers the display of further options. These formats (except for CSD) are based on the integer value i.e. by
simply interpreting the bits as an integer value INT with the MSB as the sign bit

The scale between floating and fixpoint format is determined by partitioning of the word length W into integer and
fractional places WI and WF. In general, W = WI + WF + 1 where the “+ 1” accounts for the sign bit.

Three kinds of partioning can be selected in a combo box:

• The integer format has no fractional bits, WF = 0 and W = WI + 1. This is the format used by mi-
gen as well, RWV = INT

• The normalized fractional format has no integer bits, WI = 0 and W = WF + 1.

• The general fractional format has an arbitrary number of fractional and integer bits, W = WI + WF
+ 1.

In any case, scaling is determined by the number of fractional bits, 𝑅𝑊𝑉 = 𝐼𝑁𝑇 · 2−𝑊𝐹 .

𝐹 =
𝑓

𝑓𝑆
or Ω =

2𝜋𝑓

𝑓𝑆
= 2𝜋𝐹

1.2. Input Coeffs 7

pyfda Documentation, Release 0.5.2

Fig. 1.8: Screenshot of the coefficients tab for fixpoint formats

It is important to understand that these settings only influence the display of the coefficients, the frequency re-
sponse etc. is only updated when the quantize icon (the staircase) is clicked AND afterwards the changed coeffi-
cients are saved to the dict (downwards arrow). However, when you do a fixpoint simulation or generate Verilog
code from the fixpoint tab, the selected word format is used for the coefficients.

In addition to setting the position of the binary point you can select the behaviour for:

• Quantization: The very high precision of the floating point format needs to be reduced for the fixpoint
representation. Here you can select between floor (truncate the LSBs), round (classical rounding)
and fix (always round to the next smallest magnitude value)

• Saturation: When the floating point number is outside the range of the fixpoint format, either two’s
complement overflow occurs (wrap) or the value is clipped to the maximum resp. minimum (“satu-
ration”, sat)

The following shows an example of a coefficient in Q2.4 and Q0.3 format using wrap-around and truncation. It’s
easy to see that for simple wrap-around logic, the sign of the result may change.

S | WI1 | WI0 * WF0 | WF1 | WF2 | WF3 : WI = 2, WF = 4, W = 7
0 | 1 | 0 * 1 | 0 | 1 | 1 = 43 (INT) or 43/16 = 2 + 11/16 (RWV)

*
| S * WF0 | WF1 | WF2 : WI = 0, WF = 3, W = 4

0 * 1 | 0 | 1 = 7 (INT) or 7/8 (RWV)

1.2.2 Development

More info on this widget can be found under input_coeffs.

8 Chapter 1. User Manual

pyfda Documentation, Release 0.5.2

1.3 Input P/Z

Fig. 1.9 shows a typical view of the P/Z tab where you can view and edit the filter poles and zeros. Pole / zero
values are updated every time you design a new filter or update the coefficients.

In the top row, the display of poles and zeros can be disabled as an update can be time consuming for high order
filters (𝑁 > 100).

1.3.1 Cartesian format

Fig. 1.9: Screenshot of the pole/zero tab in cartesian format

Poles and zeros are displayed in cartesian format (𝑥 and y) by default as shown in Fig. 1.9.

1.3.2 Polar format

Alternatively, poles and zeros can be displayed and edited in polar format (radius and angle) as shown in Fig. 1.10.
Especially for zeros which typically sit on the unit circle (𝑟 = 1) this format may be more suitable.

1.3.3 Development

More info on this widget can be found under input_pz.

1.4 Input Info

Fig. 1.11 shows a typical view of the Info tab where information on the current filter design and design algorithm
is displayed.

In the top row, checkboxes select which information is displayed.

The H(f) checkbox activates the display of specifications in the frequency domain and how well they are met.
Failed specifications are highlighted in red.

1.3. Input P/Z 9

pyfda Documentation, Release 0.5.2

Fig. 1.10: Screenshot of the pole/zero tab in polar format

Fig. 1.11: Screenshot of the info tab

10 Chapter 1. User Manual

pyfda Documentation, Release 0.5.2

The Doc$ checkbox selects whether docstring info from the corresponding python module is displayed. The RTF
checkbox selects Rich Text Format for the documentation.

The FiltDict and FiltTree checkboxes are for debugging purposes only.

1.4.1 Development

More info on this widget can be found under input_info.

1.5 Input Files

Fig. 1.12 shows a typical view of the Files tab where filter designs can be saved and loaded.

Fig. 1.12: Screenshot of the files tab

Additionally, you can view the python version, paths etc. in the About popup window:

Fig. 1.13: Screenshot of the “About pyfda” popup window

1.5. Input Files 11

pyfda Documentation, Release 0.5.2

1.5.1 Development

More info on this widget can be found under input_files.

1.6 Fixpoint Specs

1.6.1 Overview

The Fixpoint tab (Fig. 1.14) provides options for generating and simulating discrete-time filters that can be imple-
mented in hardware. Hardware implementations for discrete-time filters usually imply fixpoint arithmetics but this
could change in the future as floating point arithmetics can be implemented on FPGAs using dedicated floating
point units (FPUs).

Order and the coefficients have been calculated by a filter design algorithm from the pyfda.filter_designs package
to meet target filter specifications (usually in the frequency domain).

In this tab, a fixpoint implementation can be selected in the upper left corner (fixpoint filter implementations are
available only for a few filter design algorithms at the moment, most notably IIR filters are missing).

The fixpoint format of input word 𝑄𝑋 and output word 𝑄𝑌 can be adjusted for all fixpoint filters, pressing the
“lock” button makes the format of input and output word identical. Depending on the fixpoint filter, other formats
(coefficients, accumulator) can be set as well.

In general, Ovfl. combo boxes determine overflow behaviour (Two’s complement wrap around or saturation),
Quant. combo boxes select quantization behaviour between rounding, truncation (“floor”) or round-towards-zero
(“fix”). These methods may not all be implemented for each fixpoint filter. Truncation is easiest to implement but
has an average bias of -1/2 LSB, in contrast, rounding has no bias but requires an additional adder. Only rounding-
towards-zero guarantees that the magnitude of the rounded number is not larger than the input, thus preventing
limit cycles in recursive filters.

Fig. 1.14: Fixpoint parameter entry widget

Typical simulation results are shown in Fig. 1.15 (time domain) and Fig. 1.16 (frequency domain).

12 Chapter 1. User Manual

pyfda Documentation, Release 0.5.2

Fig. 1.15: Fixpoint simulation results (time domain)

Fixpoint filters are inherently non-linear due to quantization and saturation effects, that’s why frequency charac-
teristics can only be derived by running a transient simulation and calculating the Fourier response afterwards:

1.6.2 Configuration

The configuration file pyfda.conf lists the fixpoint classes to be used, e.g. DF1 and DF2. pyfda.
tree_builder.Tree_Builder parses this file and writes all fixpoint modules into the list fb.
fixpoint_widgets_list. The input widget pyfda.input_widgets.input_fixpoint_specs.
Input_Fixpoint_Specs constructs a combo box from this list with references to all successfully im-
ported fixpoint modules. The currently selected fixpoint widget (e.g. DF1) is imported from pyfda.
fixpoint_widgets together with the referenced image.

1.6.3 Development

More info on this widget can be found under input_widgets.input_fixpoint_specs.

1.7 Plot H(f)

Fig. 1.17 shows a typical view of the |H(f)| tab for plotting the magnitude frequency response.

You can plot magnitude, real or imaginary part in V (linear), W (squared) or dB (log. scale).

Zero phase removes the linear phase as calculated from the filter order. There is no check whether the design
actually is linear phase, that’s why results may be nonsensical. When the unit is dB or W , this option makes no
sense and is not available. It also makes no sense when the magnitude of H(f) is plotted, but it might be interesting
to look at the resulting phase.

Depending on the Inset combo box, a small inset plot of the frequency reponse is displayed, changes of zoom,
unit etc. only have an influence on the main plot (“fixed”) or the inset plot (“edit”). This way, you can e.g. zoom
into pass band and stop band in the same plot. The handling still has some rough edges.

1.7. Plot H(f) 13

pyfda Documentation, Release 0.5.2

Fig. 1.16: Fixpoint simulation results (frequency domain)

Fig. 1.17: Screenshot of the |H(f)| tab

14 Chapter 1. User Manual

pyfda Documentation, Release 0.5.2

Show specs displays the specifications; the display makes little sense when re(H) or im(H) is plotted.

Phase overlays a plot of the phase, the unit can be set in the phase tab.

1.7.1 Development

More info on this widget can be found under plot_hf .

1.8 Plot Phi(f)

Fig. 1.18 shows a typical view of the 𝜙(𝑓)𝜙(𝑓)𝜙(𝑓) tab for plotting the phase response of an elliptical filter (IIR).

Fig. 1.18: Screenshot of the 𝜙(𝑓) tab

You can select the unit for the phase and whether the phase will be wrapped between −𝜋 . . . 𝜋 or not.

1.8.1 Development

More info on this widget can be found under plot_phi.

1.9 Plot tau(f)

Fig. 1.19 shows a typical view of the 𝜏(𝑓)𝜏(𝑓)𝜏(𝑓) tab for plotting the group delay, here, an elliptical filter (IIR) is shown.

There are no user servicable parts on this tab.

1.9.1 Development

More info on this widget can be found under plot_tau_g.

1.8. Plot Phi(f) 15

pyfda Documentation, Release 0.5.2

Fig. 1.19: Screenshot of the 𝜏(𝑓) tab

1.10 Plot P/Z

Fig. 1.20 shows a typical view of the P/Z tab for plotting poles and zeros, here, an elliptical filter (IIR) is shown.

Optionally, the magnitude frequency response can be plotted around the unit circle to show the influence of poles
and zeros (Fig. 1.21).

1.10.1 Development

More info on this widget can be found under plot_pz.

1.11 Plot h[n]

Fig. 1.22 shows a typical view of the h[n] tab for plotting the transient response and its Fourier transformation,
here, an elliptical filter (IIR) is shown.

There are a lot of options in this tab:

Time / Frequency These vertical tabs select between the time (transient) and frequency (spectral) domain. Sig-
nals are calculated in the time domain and then transformed using Fourier transform. For an transform of
periodic signals without leakage effect, (“smeared” spectral lines) take care that:

• The filter has settled sufficiently. Select a suitable value of N0.

• The number of data points N is chosen in such a way that an integer number of periods is transformed.

• The FFT window is set (in the Frequency tab) to rectangular. Other windows work as well but they
distribute spectral lines over several bins. When it is not possible to capture an integer number of
periods, use another window as the rectangular window has the worst leakage effect.

View What will be plotted and how.

16 Chapter 1. User Manual

pyfda Documentation, Release 0.5.2

Fig. 1.20: Screenshot of the P/Z tab

Fig. 1.21: Screenshot of the P/Z tab with overlayed H(f) plot

1.11. Plot h[n] 17

pyfda Documentation, Release 0.5.2

Fig. 1.22: Screenshot of the h[n] tab (time domain)

Stimulus Select the stimulus, its frequency, DC-content, noise . . . When the BL checkbox is checked, the signal is
bandlimited to the Nyquist frequency. Some signals have strong harmonic content which produces aliasing.
This can be seen best in the frequency domain (e.g. for a sawtooth signal with f = 0.15). The stimulus
options can be hidden with the checkbox Stim. Options.

DC and Different sorts of noise can be added.

Run Usually, plots are updated as soon as an option has been changed. This can be disabled with the Auto
checkbox for cases where the simulation takes a long time (e.g. for some fixpoint simulations)

The Fourier transform of the transient signal can be viewed in the vertical tab “Frequency” (Fig. 1.23). This is
especially important for fixpoint simulations where the frequency response cannot be calculated analytically.

1.11.1 Development

More info on this widget can be found under plot_impz.

1.12 Plot 3D

Fig. 1.24 shows a typical view of the 3D tab for 3D visualizations of the magnitude frequency response and poles
/ zeros. Fig. 1.24 is a surface plot which looks nice but takes the longest time to compute.

You can plot 3D visualizations of |𝐻(𝑧)| as well as |𝐻(𝑒𝑗𝜔)| along the unit circle (UC).

For faster visualizations, start with a mesh plot (Fig. 1.25) or a contour plot and switch to a surface plot when you
are pleased with scale and view.

1.12.1 Development

More info on this widget can be found under plot_3d.

18 Chapter 1. User Manual

pyfda Documentation, Release 0.5.2

Fig. 1.23: Screenshot of the h[n] tab (frequency domain)

Fig. 1.24: Screenshot of the 3D tab (surface plot)

1.12. Plot 3D 19

pyfda Documentation, Release 0.5.2

Fig. 1.25: Screenshot of the 3D tab (mesh plot)

1.13 Customization

You can customize pyfda behaviour in some configuration files:

1.13.1 pyfda.conf

A copy of pyfda/pyfda.conf is created in <USER_HOME>/.pyfda/pyfda.conf where it can be edited
by the user to choose which widgets and filters will be included. Fixpoint widgets can be assigned to filter designs
and one or more user directories can be defined if you want to develop and integrate your own widgets (it’s not so
hard!):

1.13.2 pyfda_log.conf

A copy of pyfda/pyfda_log.conf is created in <USER_HOME>/.pyfda/pyfda_log.conf where it
can be edited to control logging behaviour:

1.13.3 pyfda_rc.py

Layout and some parameters can be customized with the file pyfda/pyfda_rc.py (within the install directory
right now, no user copy).

20 Chapter 1. User Manual

CHAPTER 2

Development

This part of the documentation describes the features of pyFDA that are relevant for developers.

2.1 Software Organization

The software is organized as shown in the following figure

Fig. 2.1: pyfda Organization

Communication: The modules communicate via Qt’s signal-slot mechanism (see: Signalling: What’s up?).

Data Persistence: Common data is stored in dicts that can be accessed globally (see: Persistence: Where’s the
data?).

21

pyfda Documentation, Release 0.5.2

Customization: The software can be customized a.o. via the file conf.py (see: Customization).

2.2 Signalling: What’s up?

The figure above shows the general pyfda hierarchy. When parameters or settings are changed in a widget, a Qt
signal is emitted that can be processed by other widgets with a sig_rx slot for receiving information. The dict
dict_sig is attached to the signal as a “payload”, providing information about the sender and the type of event
. sig_rx is connected to the process_sig_rx() method that processes the dict.

Many Qt signals can be connected to one Qt slot and one signal to many slots, so signals of input and plot
widgets are collected in pyfda.input_widgets.input_tab_widgets and pyfda.plot_widgets.
plot_tab_widgets respectively and connected collectively.

When a redraw / calculations can take a long time, it makes sense to perform these operations only when the
widget is visible and store the need for a redraw in a flag.

class MyWidget(QWidget):
sig_resize = pyqtSignal() # emit a local signal upon resize
sig_rx = pyqtSignal(object) # incoming signal
sig_tx = pyqtSignal(object) # outgoing signal

def __init__(self, parent):
super(MyWidget, self).__init__(parent)
self.data_changed = True # initialize flags
self.view_changed = True
self.filt_changed = True
self.sig_rx.connect(self.process_sig_rx)
usually done in method ``_construct_UI()``

def process_sig_rx(self, dict_sig=None):
"""
Process signals coming in via subwidgets and sig_rx
"""
if dict_sig['sender'] == __name__: # only needed when a ``sig_tx signal`` is

→˓fired
logger.debug("Infinite loop detected")
return

if self.isVisible():
if 'data_changed' in dict_sig or self.data_changed:

self.recalculate_some_data() # this may take time ...
self.data_changed = False

if 'view_changed' in dict_sig and dict_sig['view_changed'] == 'new_limits'\
or self.view_changed:
self._update_my_plot() # ... while this just updates the display
self.view_changed = False

if 'filt_changed' in dict_sig or self.filt_changed:
self.update_wdg_UI() # new filter needs new UI options
self.filt_changed = False

else:
if 'data_changed' in dict_sig or 'view_changed' in dict_sig:

self.data_changed = True
self.view_changed = True

if 'filt_changed' in dict_sig:
self.filt_changed = True

Information is transmitted via the global sig_tx signal:

dict_sig = {'sender':__name__, 'fx_sim':'set_results', 'fx_results':self.fx_
→˓results}
self.sig_tx.emit(dict_sig)

22 Chapter 2. Development

pyfda Documentation, Release 0.5.2

The following dictionary keys are generally used, individual ones can be created as needed.

‘sender’ Fully qualified name of the sending widget, usually given as __name__. The sender name
is needed a.o. to prevent infinite loops which may occur when the rx event is connected to the
tx signal.

‘filt_changed’ A different filter type (response type, algorithm, . . .) has been selected or loaded,
requiring an update of the UI in some widgets.

‘data_changed’ A filter has been designed and the actual data (e.g. coefficients) has changed, you
can add the (short) name or a data description as the dict value. When this key is sent, most
widgets have to be updated.

‘specs_changed’ Filter specifications have changed - this will influence only a few widgets like the
plot_hf widget that plots the filter specifications as an overlay or the input_info widget that
compares filter performance to filter specifications.

‘view_changed’ When e.g. the range of the frequency axis is changed from 0 . . . 𝑓𝑆/2 to
−𝑓𝑆/2 . . . 𝑓𝑆/2, this information can be propagated with the 'view_changed' key.

‘ui_changed’ Propagate a change of the UI to other widgets, examples are:

• 'ui_changed':'csv' for a change of CSV import / export options

• 'ui_changed':'resize' when the parent window has been resized

• 'ui_changed':'tab' when a different tab has been selected

‘fx_sim’ Signal the phase / status of a fixpoint simulation (‘finished’, ‘error’)

2.3 Persistence: Where’s the data?

At startup, a dictionary is constructed with information about the filter classes and their methods. The central
dictionary fb.dict is initialized.

2.4 Main Routines

2.4.1 pyfda.pyfda_dirs

2.4.2 pyfda.tree_builder

2.4.3 pyfda.pyfda_lib

2.4.4 pyfda.filter_factory

Dynamic parameters and settings are exchanged via the dictionaries in this file. Importing filterbroker.py
runs the module once, defining all module variables which have a global scope like class variables and can be
imported like

>>> import filter_factory as ff
>>> myfil = ff.fil_factory

class pyfda.filter_factory.FilterFactory
This class implements a filter factory that (re)creates the globally accessible filter instance fil_inst from
module path and class name, passed as strings.

call_fil_method(method, fil_dict, fc=None)
Instantiate the filter design class passed as string fc with the globally accessible handle fil_inst.
If fc = None, use the previously instantiated filter design class.

2.3. Persistence: Where’s the data? 23

pyfda Documentation, Release 0.5.2

Next, call the design method passed as string method of the instantiated filter design class.

Parameters

• method (string) – The name of the design method to be called (e.g. ‘LPmin’)

• fil_dict (dictionary) – A dictionary with all the filter specs that is passed to
the actual filter design routine. This is usually a copy of fb.fil[0] The results of
the filter design routine are written back to the same dict.

• fc (string (optional, default: None)) – The name of the filter design
class to be instantiated. When nothing is specified, the last filter selection is used.

Returns

err_code –

one of the following error codes:

-1 filter design operation has been cancelled by user

0 filter design method exists and is callable

16 passed method name is not a string

17 filter design method does not exist in class

18 filter design error containing “order is too high”

19 filter design error containing “failure to converge”

99 unknown error

Return type int

Examples

>>> call_fil_method("LPmin", fil[0], fc="cheby1")

The example first creates an instance of the filter class ‘cheby1’ and then performs the actual filter
design by calling the method ‘LPmin’, passing the global filter dictionary fil[0] as the parameter.

create_fil_inst(fc, mod=None)
Create an instance of the filter design class passed as a string fc from the module found in fb.
filter_classes[fc]. This dictionary has been collected by tree_builder.py.

The instance can afterwards be globally referenced as fil_inst.

Parameters

• fc (str) – The name of the filter design class to be instantiated (e.g. ‘cheby1’
or ‘equiripple’)

• mod (str (optional, default = None)) – Fully qualified name of
the filter module. When not specified, it is read from the global dict fb.
filter_classes[fc]['mod']

Returns

err_code –

one of the following error codes:

-1 filter design class was instantiated successfully

0 filter instance exists, no re-instantiation necessary

1 filter module not found by FilterTreeBuilder

2 filter module found by FilterTreeBuilder but could not be imported

24 Chapter 2. Development

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pyfda Documentation, Release 0.5.2

3 filter class could not be instantiated

4 unknown error during instantiation

Return type int

Examples

>>> create_fil_instance('cheby1')
>>> fil_inst.LPmin(fil[0])

The example first creates an instance of the filter class ‘cheby1’ and then performs the actual filter
design by calling the method ‘LPmin’, passing the global filter dictionary fil[0] as the parameter.

pyfda.filter_factory.fil_factory = <pyfda.filter_factory.FilterFactory object>
Class instance of FilterFactory that can be accessed in other modules

pyfda.filter_factory.fil_inst = None
Instance of current filter design class (e.g. “cheby1”), globally accessible

>>> import filter_factory as ff
>>> ff.fil_factory.create_fil_instance('cheby1') # create instance of dynamic
→˓class
>>> ff.fil_inst.LPmin(fil[0]) # design a filter

2.4.5 pyfda.filterbroker

Dynamic parameters and settings are exchanged via the dictionaries in this file. Importing filterbroker.py
runs the module once, defining all module variables which have a global scope like class variables and can be
imported like

>>> import filterbroker as fb
>>> myfil = fb.fil[0]

The entries in this file are only used as initial / default entries and to demonstrate the structure of the global dicts
and lists. These initial values are also handy for module-level testing where some useful settings of the variables
is required.

Notes

Alternative approaches for data persistence could be the packages shelve or pickleshare More info on data persis-
tence and storing / accessing global variables:

• http://stackoverflow.com/questions/13034496/using-global-variables-between-files-in-python

• http://stackoverflow.com/questions/1977362/how-to-create-module-wide-variables-in-python

• http://pymotw.com/2/articles/data_persistence.html

• http://stackoverflow.com/questions/9058305/getting-attributes-of-a-class

• http://stackoverflow.com/questions/2447353/getattr-on-a-module

pyfda.filterbroker.base_dir = ''
Project base directory

pyfda.filterbroker.clipboard = None
Handle to central clipboard instance

pyfda.filterbroker.design_filt_state = 'changed'
“ok”, “changed”, “error”, “failed”

Type State of filter design

2.4. Main Routines 25

https://docs.python.org/3/library/functions.html#int
http://stackoverflow.com/questions/13034496/using-global-variables-between-files-in-python
http://stackoverflow.com/questions/1977362/how-to-create-module-wide-variables-in-python
http://pymotw.com/2/articles/data_persistence.html
http://stackoverflow.com/questions/9058305/getting-attributes-of-a-class
http://stackoverflow.com/questions/2447353/getattr-on-a-module

pyfda Documentation, Release 0.5.2

pyfda.filterbroker.filter_classes = {'Bessel': {'mod': 'pyfda.filter_designs.bessel', 'name': 'Bessel'}, 'Butter': {'mod': 'pyfda.filter_designs.butter', 'name': 'Butterworth'}, 'Cheby1': {'mod': 'pyfda.filter_designs.cheby1', 'name': 'Chebychev 1'}, 'Cheby2': {'mod': 'pyfda.filter_designs.cheby2', 'name': 'Chebychev 2'}, 'Ellip': {'mod': 'pyfda.filter_designs.ellip', 'name': 'Elliptic'}, 'EllipZeroPhz': {'mod': 'pyfda.filter_designs.ellip_zero', 'name': 'EllipZeroPhz'}, 'Equiripple': {'mod': 'pyfda.filter_designs.equiripple', 'name': 'Equiripple'}, 'Firwin': {'mod': 'pyfda.filter_designs.firwin', 'name': 'Windowed FIR'}, 'MA': {'mod': 'pyfda.filter_designs.ma', 'name': 'Moving Average'}, 'Manual_FIR': {'mod': 'pyfda.filter_designs.manual', 'name': 'Manual'}, 'Manual_IIR': {'mod': 'pyfda.filter_designs.manual', 'name': 'Manual'}}
The keys of this dictionary are the names of all found filter classes, the values are the name to be displayed
e.g. in the comboboxes and the fully qualified name of the module containing the class.

2.4.6 pyfda.pyfda_io_lib

2.5 Libraries

2.5.1 pyfda.pyfda_fix_lib

2.5.2 pyfda.pyfda_fix_lib.Fixed

2.6 Package input_widgets

This package contains the widgets for entering / selecting parameters for the filter design.

2.6.1 input_tab_widgets

Tabbed container for all input widgets

class pyfda.input_widgets.input_tab_widgets.InputTabWidgets(parent)
Create a tabbed widget for all input subwidgets in the list fb.input_widgets_list. This list is
compiled at startup in pyfda.tree_builder.Tree_Builder.

log_rx(dict_sig=None)
Enable self.sig_rx.connect(self.log_rx) above for debugging.

2.6.2 input_specs

Widget stacking all subwidgets for filter specification and design. The actual filter design is started here as well.

class pyfda.input_widgets.input_specs.Input_Specs(parent)
Build widget for entering all filter specs

load_dict()
Reload all specs/parameters entries from global dict fb.fil[0], using the “load_dict” methods of the
individual classes

process_sig_rx(dict_sig=None, propagate=False)
Process signals coming in via subwidgets and sig_rx

All signals terminate here unless the flag propagate=True.

The sender name of signals coming in from local subwidgets is changed to its parent widget (in-
put_specs) to prevent infinite loops.

process_sig_rx_local(dict_sig=None)
Flag signals coming in from local subwidgets with propagate=True before proceeding with process-
ing in process_sig_rx.

quit_program()
When <QUIT> button is pressed, send ‘quit_program’

start_design_filt()
Start the actual filter design process:

• store the entries of all input widgets in the global filter dict.

26 Chapter 2. Development

pyfda Documentation, Release 0.5.2

• call the design method, passing the whole dictionary as the argument: let the design method
pick the needed specs

• update the input widgets in case weights, corner frequencies etc. have been changed by the filter
design method

• the plots are updated via signal-slot connection

update_UI(dict_sig={})
update_UI is called every time the filter design method or order (min / man) has been changed as this
usually requires a different set of frequency and amplitude specs.

At this time, the actual filter object instance has been created from the name of the design method
(e.g. ‘cheby1’) in select_filter.py. Its handle has been stored in fb.fil_inst.

fb.fil[0] (currently selected filter) is read, then general information for the selected filter type and
order (min/man) is gathered from the filter tree [fb.fil_tree], i.e. which parameters are needed, which
widgets are visible and which message shall be displayed.

Then, the UIs of all subwidgets are updated using their “update_UI” method.

pyfda.input_widgets.input_specs.classes = {'Input_Specs': 'Specs'}
display name

Type Dict containing class name

2.6.3 select_filter

Subwidget for selecting the filter, consisting of combo boxes for: - Response Type (LP, HP, Hilbert, . . .) - Filter
Type (IIR, FIR, CIC . . .) - Filter Class (Butterworth, . . .)

class pyfda.input_widgets.select_filter.SelectFilter(parent)
Construct and read combo boxes for selecting the filter, consisting of the following hierarchy:

1. Response Type rt (LP, HP, Hilbert, . . .)

2. Filter Type ft (IIR, FIR, CIC . . .)

3. Filter Class (Butterworth, . . .)

Every time a combo box is changed manually, the filter tree for the selected response resp. filter type is read
and the combo box(es) further down in the hierarchy are populated according to the available combinations.

sig_tx({‘filt_changed’}) is emitted and propagated to input_filter_specs.py where it triggers the recreation
of all subwidgets.

load_dict()
Reload comboboxes from filter dictionary to update changed settings after loading a filter design from
disk. load_dict uses the automatism of _set_response_type etc. of checking whether the previously
selected filter design method is also available for the new combination.

load_filter_order(enb_signal=False)

Called by set_design_method or from InputSpecs (with enb_signal = False), load filter order
setting from fb.fil[0] and update widgets

2.6.4 input_coeffs

Widget for displaying and modifying filter coefficients

class pyfda.input_widgets.input_coeffs.Input_Coeffs(parent)
Create widget with a (sort of) model-view architecture for viewing / editing / entering data contained in
self.ba which is a list of two numpy arrays:

• self.ba[0] contains the numerator coefficients (“b”)

2.6. Package input_widgets 27

pyfda Documentation, Release 0.5.2

• self.ba[1] contains the denominator coefficients (“a”)

The list don’t neccessarily have the same length but they are always defined. For FIR filters, self.ba[1][0]
= 1, all other elements are zero.

The length of both lists can be egalized with self._equalize_ba_length().

Views / formats are handled by the ItemDelegate() class.

load_dict()
Load all entries from filter dict fb.fil[0][‘ba’] into the coefficient list self.ba and update the display
via self._refresh_table().

The filter dict is a “normal” 2D-numpy float array for the b and a coefficients while the coefficient
register self.ba is a list of two float ndarrays to allow for different lengths of b and a subarrays while
adding / deleting items.

process_sig_rx(dict_sig=None)
Process signals coming from sig_rx

qdict2ui()
Triggered by: - process_sig_rx() if self.fx_specs_changed or dict_sig[‘fx_sim’] == ‘specs_changed’
- Set the UI from the quantization dict and update the fixpoint object. When neither WI == 0 nor WF
== 0, set the quantization format to general fractional format qfrac.

quant_coeffs()
Quantize selected / all coefficients in self.ba and refresh QTableWidget

ui2qdict()
Triggered by modifying ui.cmbFormat, ui.cmbQOvfl, ui.cmbQuant, ui.ledWF, ui.ledWI or ui.ledW
(via _W_changed()) or ui.cmbQFrmt (via _set_number_format()) or ui.ledScale() (via _set_scale())
or ‘qdict2ui()’ via _set_number_format()

Read out the settings of the quantization comboboxes.

• Store them in the filter dict fb.fil[0][‘fxqc’][‘QCB’] and as class attributes in the fixpoint ob-
ject self.myQ

• Emit a signal with ‘view_changed’:’q_coeff’

• Refresh the table

class pyfda.input_widgets.input_coeffs.ItemDelegate(parent)
The following methods are subclassed to replace display and editor of the QTableWidget.

• displayText() displays the data stored in the table in various number formats

• createEditor() creates a line edit instance for editing table entries

• setEditorData() pass data with full precision and in selected format to editor

• setModelData() pass edited data back to model (self.ba)

Editing the table triggers setModelData() but does not emit a signal outside this class, only the ui.butSave
button is highlighted. When it is pressed, a signal with ‘data_changed’:’input_coeffs’ is produced in class
Input_Coeffs. Additionally, a signal is emitted with ‘view_changed’:’q_coeff’ by ui2qdict()?!

createEditor(parent, options, index)
Neet to set editor explicitly, otherwise QDoubleSpinBox instance is created when space is not suffi-
cient?! editor: instance of e.g. QLineEdit (default) index: instance of QModelIndex options: instance
of QStyleOptionViewItemV4

displayText(text, locale)
Display text with selected fixpoint base and number of places

text: string / QVariant from QTableWidget to be rendered locale: locale for the text

The instance parameter myQ.ovr_flag is set to +1 or -1 for positive / negative overflows, else it is 0.

28 Chapter 2. Development

pyfda Documentation, Release 0.5.2

initStyleOption(option, index)
Initialize option with the values using the index index. When the item (0,1) is processed, it is styled
especially. All other items are passed to the original initStyleOption() which then calls displayText().
Afterwards, check whether an fixpoint overflow has occured and color item background accordingly.

setEditorData(editor, index)
Pass the data to be edited to the editor: - retrieve data with full accuracy from self.ba (in float format)
- requantize data according to settings in fixpoint object - represent it in the selected format (int, hex,
. . .)

editor: instance of e.g. QLineEdit index: instance of QModelIndex

setModelData(editor, model, index)
When editor has finished, read the updated data from the editor, convert it back to floating point
format and store it in both the model (= QTableWidget) and in self.ba. Finally, refresh the table item
to display it in the selected format (via float2frmt()).

editor: instance of e.g. QLineEdit model: instance of QAbstractTableModel index: instance of
QModelIndex

text(item)
Return item text as string transformed by self.displayText()

pyfda.input_widgets.input_coeffs.classes = {'Input_Coeffs': 'b,a'}
display name

Type Dict containing class name

2.6.5 input_pz

Widget for displaying and modifying filter Poles and Zeros

class pyfda.input_widgets.input_pz.Input_PZ(parent)
Create the window for entering exporting / importing and saving / loading data

cmplx2frmt(text, places=-1)
Convert number “text” (real or complex or string) to the format defined by cmbPZFrmt.

Returns string

eventFilter(source, event)
Filter all events generated by the QLineEdit widgets. Source and type of all events generated by
monitored objects are passed to this eventFilter, evaluated and passed on to the next hierarchy level.

• When a QLineEdit widget gains input focus (QEvent.FocusIn), display the stored value from
filter dict with full precision

• When a key is pressed inside the text field, set the spec_edited flag to True.

• When a QLineEdit widget loses input focus (QEvent.FocusOut), store current value in linear
format with full precision (only if spec_edited == True) and display the stored value in selected
format

frmt2cmplx(text, default=0.0)
Convert format defined by cmbPZFrmt to real or complex

load_dict()
Load all entries from filter dict fb.fil[0][‘zpk’] into the Zero/Pole/Gain list self.zpk and update the
display via self._refresh_table(). The explicit np.array(. . .) statement enforces a deep copy of
fb.fil[0], otherwise the filter dict would be modified inadvertedly. dtype=object needs to be specified
to create a numpy array from the nested lists with differing lengths without creating the deprecation
warning

“Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndar-
rays with different lengths or shapes) is deprecated.”

2.6. Package input_widgets 29

pyfda Documentation, Release 0.5.2

The filter dict fb.fil[0][‘zpk’] is a list of numpy float ndarrays for z / p / k values self.zpk is an array of
float ndarrays with different lengths of z / p / k subarrays to allow adding / deleting items.

process_sig_rx(dict_sig=None)
Process signals coming from sig_rx

setup_signal_slot()
Setup setup signal-slot connections

class pyfda.input_widgets.input_pz.ItemDelegate(parent)
The following methods are subclassed to replace display and editor of the QTableWidget.

• displayText() displays the data stored in the table in various number formats

• createEditor() creates a line edit instance for editing table entries

• setEditorData() pass data with full precision and in selected format to editor

• setModelData() pass edited data back to model (self.zpk)

createEditor(parent, options, index)
Neet to set editor explicitly, otherwise QDoubleSpinBox instance is created when space is not suffi-
cient?! editor: instance of e.g. QLineEdit (default) index: instance of QModelIndex options: instance
of QStyleOptionViewItemV4

displayText(text, locale)
Display text with selected format (cartesian / polar - to be implemented) and number of places

text: string / QVariant from QTableWidget to be rendered locale: locale for the text

initStyleOption(option, index)
Initialize option with the values using the index index. All items are passed to the original initStyleOp-
tion() which then calls displayText().

Afterwards, check whether a pole (index.column() == 1)is outside the UC and color item background
accordingly (not implemented yet).

setEditorData(editor, index)
Pass the data to be edited to the editor: - retrieve data with full accuracy (places=-1) from zpk (in float
format) - represent it in the selected format (Cartesian, polar, . . .)

editor: instance of e.g. QLineEdit index: instance of QModelIndex

setModelData(editor, model, index)
When editor has finished, read the updated data from the editor, convert it to complex format and
store it in both the model (= QTableWidget) and in zpk. Finally, refresh the table item to display it in
the selected format (via to be defined) and normalize the gain.

editor: instance of e.g. QLineEdit model: instance of QAbstractTableModel index: instance of
QModelIndex

text(item)
Return item text as string transformed by self.displayText()

class pyfda.input_widgets.input_pz.ItemDelegateAnti(parent)
The following methods are subclassed to replace display and editor of the QTableWidget.

displayText() displays number with n_digits without sacrificing precision of the data stored in the table.

displayText(self, value: Any, locale: QLocale)→ str

pyfda.input_widgets.input_pz.classes = {'Input_PZ': 'P/Z'}
display name

Type Dict containing class name

30 Chapter 2. Development

pyfda Documentation, Release 0.5.2

2.6.6 input_info

Widget for displaying infos about filter and filter design method and debugging infos as well

class pyfda.input_widgets.input_info.Input_Info(parent)
Create widget for displaying infos about filter specs and filter design method

load_dict()
update docs and filter performance

process_sig_rx(dict_sig=None)
Process signals coming from sig_rx

pyfda.input_widgets.input_info.classes = {'Input_Info': 'Info'}
display name

Type Dict containing class name

2.6.7 input_files

2.6.8 input_fixpoint_specs

The configuration file pyfda.conf lists which fixpoint classes (e.g. FIR_DF and IIR_DF1) can be used
with which filter design algorithm. tree_builder parses this file and writes all fixpoint modules into the list
fb.fixpoint_widgets_list. The input widget pyfda.input_widgets.input_fixpoint_specs constructs
a combo box from this list with references to all successfully imported fixpoint modules. The currently selected
fixpoint widget (e.g. FIR_DF) is imported from Package fixpoint_widgets together with the referenced picture.

Each fixpoint module / class contains a widget that is constructed using helper classes from fix-
point_widgets.fixpoint_helpers.py. The widgets allow entering fixpoint specifications like word lengths and for-
mats for input, output and internal structures (like an accumulator) for each class. It also contains a reference to a
picture showing the filter topology.

Details of the mechanism and the module are described in input_widgets.input_fixpoint_specs.

2.7 Package plot_widgets

Package providing widgets for plotting various time and frequency dependent filter properties

2.7.1 plot_tab_widgets

Create a tabbed widget for all plot subwidgets in the list fb.plot_widgets_list. This list is com-
piled at startup in pyfda.tree_builder.Tree_Builder, it is kept as a module variable in pyfda.
filterbroker.

class pyfda.plot_widgets.plot_tab_widgets.PlotTabWidgets(parent)

eventFilter(source, event)
Filter all events generated by the QTabWidget. Source and type of all events generated by monitored
objects are passed to this eventFilter, evaluated and passed on to the next hierarchy level.

This filter stops and restarts a one-shot timer for every resize event. When the timer generates a
timeout after 500 ms, current_tab_redraw() is called by the timer.

log_rx(dict_sig=None)
Enable self.sig_rx.connect(self.log_rx) above for debugging.

2.7. Package plot_widgets 31

pyfda Documentation, Release 0.5.2

2.7.2 plot_hf

The Plot_Hf class constructs the widget to plot the magnitude frequency response |H(f)| of the filter either in
linear or logarithmic scale. Optionally, the magnitude specifications and the phase can be overlayed.

class pyfda.plot_widgets.plot_hf.Plot_Hf(parent)
Widget for plotting |H(f)|, frequency specs and the phase

align_y_axes(ax1, ax2)
Sets tick marks of twinx axes to line up with total number of ax1 tick marks

calc_hf()
(Re-)Calculate the complex frequency response H(f)

draw()
Re-calculate |H(f)| and draw the figure

draw_inset()
Construct / destruct second axes for an inset second plot

draw_phase(ax)
Draw phase on second y-axis in the axes system passed as the argument

init_axes()
Initialize and clear the axes (this is run only once)

plot_spec_limits(ax)
Plot the specifications limits (F_SB, A_SB, . . .) as hatched areas with borders.

process_sig_rx(dict_sig=None)
Process signals coming from the navigation toolbar and from sig_rx

redraw()
Redraw the canvas when e.g. the canvas size has changed

update_view()
Draw the figure with new limits, scale etc without recalculating H(f)

pyfda.plot_widgets.plot_hf.classes = {'Plot_Hf': '|H(f)|'}
display name

Type Dict containing class name

2.7.3 plot_phi

Widget for plotting phase frequency response phi(f)

class pyfda.plot_widgets.plot_phi.Plot_Phi(parent)

calc_resp()
(Re-)Calculate the complex frequency response H(f)

draw()
Main entry point: Re-calculate |H(f)| and draw the figure

init_axes()
Initialize and clear the axes - this is only called once

process_sig_rx(dict_sig=None)
Process signals coming from the navigation toolbar and from sig_rx

redraw()
Redraw the canvas when e.g. the canvas size has changed

unit_changed()
Unit for phase display has been changed, emit a ‘view_changed’ signal and continue with drawing.

32 Chapter 2. Development

pyfda Documentation, Release 0.5.2

update_view()
Draw the figure with new limits, scale etc without recalculating H(f)

pyfda.plot_widgets.plot_phi.classes = {'Plot_Phi': '𝜑(f)'}
display name

Type Dict containing class name

2.7.4 plot_tau_g

Widget for plotting the group delay

class pyfda.plot_widgets.plot_tau_g.Plot_tau_g(parent)
Widget for plotting the group delay

calc_tau_g()
(Re-)Calculate the complex frequency response H(f)

init_axes()
Initialize the axes and set some stuff that is not cleared by ax.clear() later on.

process_sig_rx(dict_sig=None)
Process signals coming from the navigation toolbar and from sig_rx

redraw()
Redraw the canvas when e.g. the canvas size has changed

update_view()
Draw the figure with new limits, scale etc without recalculating H(f)

pyfda.plot_widgets.plot_tau_g.classes = {'Plot_tau_g': 'tau_g'}
display name

Type Dict containing class name

2.7.5 plot_pz

Widget for plotting poles and zeros

class pyfda.plot_widgets.plot_pz.Plot_PZ(parent)

draw_Hf(r=2)
Draw the magnitude frequency response around the UC

draw_pz()
(re)draw P/Z plot

init_axes()
Initialize and clear the axes (this is only run once)

process_sig_rx(dict_sig=None)
Process signals coming from the navigation toolbar and from sig_rx

redraw()
Redraw the canvas when e.g. the canvas size has changed

update_view()
Draw the figure with new limits, scale etcs without recalculating H(f) – not yet implemented, just use
draw() for the moment

zplane(b=None, a=1, z=None, p=None, k=1, pn_eps=0.001, analog=False, plt_ax=None,
plt_poles=True, style=’square’, anaCircleRad=0, lw=2, mps=10, mzs=10, mpc=’r’,
mzc=’b’, plabel=”, zlabel=”)

Plot the poles and zeros in the complex z-plane either from the coefficients (b,‘a) of a discrete transfer
function ‘H‘(‘z) (zpk = False) or directly from the zeros and poles (z,p) (zpk = True).

2.7. Package plot_widgets 33

pyfda Documentation, Release 0.5.2

When only b is given, an FIR filter with all poles at the origin is assumed.

Parameters

• b (array_like) – Numerator coefficients (transversal part of filter) When b is
not None, poles and zeros are determined from the coefficients b and a

• a (array_like (optional, default = 1 for FIR-filter)) –
Denominator coefficients (recursive part of filter)

• z (array_like, default = None) – Zeros When b is None, poles and
zeros are taken directly from z and p

• p (array_like, default = None) – Poles

• analog (boolean (default: False)) – When True, create a P/Z plot
suitable for the s-plane, i.e. suppress the unit circle (unless anaCircleRad > 0) and
scale the plot for a good display of all poles and zeros.

• pn_eps (float (default : 1e-2)) – Tolerance for separating close
poles or zeros

• plt_ax (handle to axes for plotting (default: None)) –
When no axes is specified, the current axes is determined via plt.gca()

• plt_poles (Boolean (default : True)) – Plot poles. This can be
used to suppress poles for FIR systems where all poles are at the origin.

• style (string (default: 'square')) – Style of the plot, for style
== ‘square’ make scale of x- and y- axis equal.

• mps (integer (default: 10)) – Size for pole marker

• mzs (integer (default: 10)) – Size for zero marker

• mpc (char (default: 'r')) – Pole marker colour

• mzc (char (default: 'b')) – Zero marker colour

• lw (integer (default: 2)) – Linewidth for unit circle

• zlabel (plabel,) – This string is passed to the plot command for poles and
zeros and can be displayed by legend()

Returns z, p, k

Return type ndarray

Notes

pyfda.plot_widgets.plot_pz.classes = {'Plot_PZ': 'P / Z'}
display name

Type Dict containing class name

2.7.6 plot_impz

Widget for plotting impulse and general transient responses

class pyfda.plot_widgets.plot_impz.Plot_Impz(parent)
Construct a widget for plotting impulse and general transient responses

calc_auto(autorun=None)
Triggered when checkbox “Autorun” is clicked. Enable or disable the “Run” button depending on
the setting of the checkbox. When checkbox is checked (autorun == True passed via signal- slot
connection), automatically run impz().

34 Chapter 2. Development

https://docs.python.org/3/library/functions.html#float

pyfda Documentation, Release 0.5.2

calc_fft()
(Re-)calculate FFTs of stimulus self.X, quantized stimulus self.X_q and response self.Y using the
window function self.ui.win.

calc_response()
(Re-)calculate ideal filter response self.y from stimulus self.x and the filter coefficients using lfilter(),
sosfilt() or filtfilt().

Set the flag self.cmplx when response self.y or stimulus self.x are complex and make warning field
visible.

calc_stimulus()
(Re-)calculate stimulus self.x

draw(arg=None)
(Re-)draw the figure without recalculation. When triggered by a signal- slot connection from a button,
combobox etc., arg is a boolean or an integer representing the state of the widget. In this case,
needs_redraw is set to True.

draw_data(plt_style, ax, x, y, bottom=0, label=”, plt_fmt=None, mkr=False, mkr_fmt=None,
**args)

Plot x, y data (numpy arrays with equal length) in a plot style defined by plt_style.

Parameters

• plt_style (str) – one of “line”, “stem”, “step”, “dots”

• ax (matplotlib axis) – Handle to the axis where signal is

• x (array-like) – x-axis: time or frequency data

• y (array-like) – y-data

• bottom (float) – Bottom line for stem plot. The default is 0.

• label (str) – Plot label

• plt_fmt (dict) – General styles (color, linewidth etc.) for plotting. The de-
fault is None.

• mkr (bool) – Plot a marker for every data point if enabled

• mkr_fmt (dict) – Marker styles

• args (dictionary with additional keys and values. As
they might not be) – compatible with every plot style, they have to be
added individually

Returns

Return type None

draw_freq()
(Re-)draw the frequency domain mplwidget

draw_response_fx(dict_sig=None)
Get Fixpoint results and plot them

draw_time()
(Re-)draw the time domain mplwidget

fx_select(fx=None)
Select between fixpoint and floating point simulation. Parameter fx can be:

• str “Fixpoint” or “Float” when called directly

• int 0 or 1 when triggered by changing the index of combobox self.ui.cmb_sim_select (signal-
slot-connection)

2.7. Package plot_widgets 35

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None

pyfda Documentation, Release 0.5.2

In both cases, the index of the combobox is updated according to the passed argument. If the index
has been changed since last time, self.needs_calc is set to True and the run button is set to “changed”.

When fixpoint simulation is selected, all corresponding widgets are made visible. self.fx_sim is set to
True.

If self.fx_sim has changed, self.needs_calc is set to True.

impz(arg=None)

Triggered by:

• construct_UI() [Initialization]

• Pressing “Run” button, passing button state as a boolean

• Activating “Autorun” via self.calc_auto()

• ‘fx_sim’ : ‘specs_changed’

•

Calculate response and redraw it.

Stimulus and response are only calculated if self.needs_calc == True.

process_sig_rx(dict_sig=None)
Process signals coming from - the navigation toolbars (time and freq.) - local widgets (impz_ui) and
- plot_tab_widgets() (global signals)

redraw()
Redraw the currently visible canvas when e.g. the canvas size has changed

pyfda.plot_widgets.plot_impz.classes = {'Plot_Impz': 'y[n]'}
display name

Type Dict containing class name

2.7.7 plot_3d

Widget for plotting |H(z)| in 3D

class pyfda.plot_widgets.plot_3d.Plot_3D(parent)
Class for various 3D-plots: - lin / log line plot of H(f) - lin / log surf plot of H(z) - optional display of poles
/ zeros

draw()
Main drawing entry point: perform the actual plot

draw_3d()
Draw various 3D plots

init_axes()
Initialize and clear the axes to get rid of colorbar The azimuth / elevation / distance settings of
the camera are restored after clearing the axes. See http://stackoverflow.com/questions/4575588/
matplotlib-3d-plot-with-pyqt4-in-qtabwidget-mplwidget

process_sig_rx(dict_sig=None)
Process signals coming from the navigation toolbar and from sig_rx

redraw()
Redraw the canvas when e.g. the canvas size has changed

pyfda.plot_widgets.plot_3d.classes = {'Plot_3D': '3D'}
display name

Type Dict containing class name

36 Chapter 2. Development

http://stackoverflow.com/questions/4575588/matplotlib-3d-plot-with-pyqt4-in-qtabwidget-mplwidget
http://stackoverflow.com/questions/4575588/matplotlib-3d-plot-with-pyqt4-in-qtabwidget-mplwidget

pyfda Documentation, Release 0.5.2

2.8 Package filter_designs

Package providing various algorithms for FIR and IIR filter design.

2.8.1 pyfda.filter_designs.bessel

Design Bessel filters (LP, HP, BP, BS) with fixed or minimum order, return the filter design in zeros, poles, gain
(zpk) format

This class is re-instantiated dynamically every time the filter design method is selected, reinitializing instance
attributes.

API version info:

1.0 initial working release

1.1

• copy A_PB -> A_PB2 and A_SB -> ``A_SB2 for BS / BP designs

• mark private methods as private

1.2 new API using fil_save (enable SOS features)

1.3 new public methods destruct_UI and construct_UI (no longer called by
__init__)

1.4

• module attribute filter_classes contains class name and combo box name in-
stead of class attribute name

• FRMT is now a class attribute

2.0 Specify the parameters for each subwidget as tuples in a dict where the first element con-
trols whether the widget is visible and / or enabled. This dict is now called self.
rt_dict. When present, the dict self.rt_dict_add is read and merged with the
first one.

2.1 Remove empty methods construct_UI and destruct_UI and attributes self.wdg
and self.hdl

2.2 Rename filter_classes -> classes, remove Py2 compatibility

class pyfda.filter_designs.bessel.Bessel
Design Bessel filters (LP, HP, BP, BS) with fixed or minimum order, return the filter design in zeros, poles,
gain (zpk) format

ft = None
filter type

info = None
filter variants

pyfda.filter_designs.bessel.classes = {'Bessel': 'Bessel'}
display name

Type Dict containing class name

2.9 Package fixpoint_widgets

This package contains widgets and fixpoint descriptions for simulating filter designs with fixpoint arithmetics and
for converting filter designs to Verilog using the migen library. These Verilog netlists can be synthesized e.g. on
an FPGA.

2.8. Package filter_designs 37

pyfda Documentation, Release 0.5.2

Hardware implementations for discrete-time filters usually imply fixpoint arithmetics but this could change in the
future as floating point arithmetics can be implemented on FPGAs using dedicated floating point units (FPUs).

Filter topologies are defined in the corresponding classes and can be implemented in hardware. The filter
topologies use the order and the coefficients that have been determined by a filter design algorithm from the
pyfda.filter_designs package for a target filter specification (usually in the frequency domain). Filter coefficients
are quantized according to the settings in the fixpoint widget.

Each fixpoint module / class contains a widget that is constructed using helper classes from
fixpoint_widgets.fixpoint_helpers. The widgets allow entering fixpoint specifications like word
lengths and formats for input, output and internal structures (like an accumulator) for each class. It also contains
a reference to a picture showing the filter topology.

The configuration file pyfda.conf lists which fixpoint classes (e.g. FIR_DF and IIR_DF1) can be used
with which filter design algorithm. tree_builder parses this file and writes all fixpoint modules into the list
fb.fixpoint_widgets_list.

The widgets are selected and instantiated in the widget input_widgets.input_fixpoint_specs.

The input widget pyfda.input_widgets.input_fixpoint_specs constructs a combo box from this
list with references to all successfully imported fixpoint modules. The currently selected fixpoint widget (e.g.
FIR_DF) is imported from Package fixpoint_widgets together with the referenced picture.

First, a filter widget is instantiated as self.fx_wdg_inst (after the previous one has been destroyed).

Next, fx_wdg_inst.construct_fixp_filter() constructs an instance fixp_filter of a migen fil-
ter class (of e.g. pyfda.fixpoint_widgets.fir_df).

The widget’s methods

• response = fx_wdg_inst.run_sim(stimulus)

• fx_wdg_inst.to_verilog()

are used for bit-true simulations and for generating Verilog code for the filter.

2.9.1 input_widgets.input_fixpoint_specs

A fixpoint filter for a given filter design is selected in this widget

Widget for simulating fixpoint filters and generating Verilog Code

class pyfda.input_widgets.input_fixpoint_specs.Input_Fixpoint_Specs(parent)
Create the widget that holds the dynamically loaded fixpoint filter ui

embed_fixp_img(img_file)
Embed image as self.img_fixp, either in png or svg format

Parameters

• img_file – str

• and file name to image file (path) –

eventFilter(source, event)
Filter all events generated by monitored QLabel, only resize events are processed here, generating a
sig_resize signal. All other events are passed on to the next hierarchy level.

exportHDL()
Synthesize HDL description of filter

fx_sim_init()
Initialize fix-point simulation:

• Update the fxqc_dict containing all quantization information

• Setup a filter instance for migen simulation

• Request a stimulus signal

38 Chapter 2. Development

pyfda Documentation, Release 0.5.2

fx_sim_set_stimulus(dict_sig)

• Get fixpoint stimulus from dict_sig in integer format

• Pass it to the fixpoint filter and calculate the fixpoint response

• Send the reponse to the plotting widget

process_sig_rx(dict_sig=None)
Process signals coming in via subwidgets and sig_rx

Play PingPong with a stimulus & plot widget:

2. fx_sim_init(): Request stimulus by sending ‘fx_sim’:’get_stimulus’

3. fx_sim_set_stimulus(): Receive stimulus from widget in ‘fx_sim’:’send_stimulus’
and pass it to HDL object for simulation

4. Send back HDL response to widget via ‘fx_sim’:’set_response’

resize_img()
Triggered when self (the widget) is resized, consequently the image inside QLabel is resized to com-
pletely fill the label while keeping the aspect ratio.

This doesn’t really work at the moment.

update_fxqc_dict()
Update the fxqc dictionary before simulation / HDL generation starts.

wdg_dict2ui()
Trigger an update of the fixpoint widget UI when view (i.e. fixpoint coefficient format) or data have
been changed outside this class. Additionally, pass the fixpoint quantization widget to update / restore
other subwidget settings.

Set the RUN button to “changed”.

pyfda.input_widgets.input_fixpoint_specs.classes = {'Input_Fixpoint_Specs': 'Fixpoint'}
display name

Type Dict containing class name

2.9.2 pyfda.fixpoint_widgets.fir_df

Widget for specifying the parameters of a direct-form DF1 FIR filter

class pyfda.fixpoint_widgets.fir_df.FIR_DF_wdg(parent)
Widget for entering word formats & quantization, also instantiates fixpoint filter class FilterFIR.

construct_fixp_filter()
Construct an instance of the fixpoint filter object using the settings from the ‘fxqc’ quantizer dict

dict2ui()
Update all parts of the UI that need to be updated when specs have been changed outside this class,
e.g. coefficients and coefficient wordlength. This also provides the initial setting for the widgets when
the filter has been changed.

This is called from one level above by pyfda.input_widgets.input_fixpoint_specs.
Input_Fixpoint_Specs.

run_sim(stimulus)
Pass stimuli and run filter simulation, see https://reconfig.io/2018/05/hello_world_migen https://
github.com/m-labs/migen/blob/master/examples/sim/fir.py

tb_wdg_stim(stimulus, outputs)
use stimulus list from widget as input to filter

to_verilog(**kwargs)
Convert the migen description to Verilog

2.9. Package fixpoint_widgets 39

https://reconfig.io/2018/05/hello_world_migen
https://github.com/m-labs/migen/blob/master/examples/sim/fir.py
https://github.com/m-labs/migen/blob/master/examples/sim/fir.py

pyfda Documentation, Release 0.5.2

ui2dict()
Read out the quantization subwidgets and store their settings in the central fixpoint dictionary
fb.fil[0][‘fxqc’] using the keys described below.

Coefficients are quantized with these settings in the subdictionary under the key ‘b’.

Additionally, these subdictionaries are returned to the caller (input_fixpoint_specs) where
they are used to update fb.fil[0]['fxqc']

Parameters None –

Returns

• fxqc_dict (dict) – containing the following keys and values:

• - ‘QCB’ (dictionary with coefficients quantization settings)

• - ‘QA’ (dictionary with accumulator quantization settings)

• - ‘b’ (list of coefficients in integer format)

update_accu_settings()
Calculate number of extra integer bits needed in the accumulator (bit growth) depending on the coef-
ficient area (sum of absolute coefficient values) for cmbW == ‘auto’ or depending on the number of
coefficients for cmbW == ‘full’. The latter works for arbitrary coefficients but requires more bits.

The new values are written to the fixpoint coefficient dict fb.fil[0][‘fxqc’][‘QA’].

update_q_coeff(dict_sig)
Update coefficient quantization settings and coefficients.

The new values are written to the fixpoint coefficient dict as fb.fil[0][‘fxqc’][‘QCB’] and
fb.fil[0][‘fxqc’][‘b’].

pyfda.fixpoint_widgets.fir_df.classes = {'FIR_DF_wdg': 'FIR_DF'}
display name

Type Dict containing widget class name

40 Chapter 2. Development

CHAPTER 3

Literature

References

41

pyfda Documentation, Release 0.5.2

42 Chapter 3. Literature

CHAPTER 4

API documentation

4.1 pyfda – Main package

43

pyfda Documentation, Release 0.5.2

44 Chapter 4. API documentation

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

45

pyfda Documentation, Release 0.5.2

46 Chapter 5. Indices and tables

Bibliography

[JOS] Julius O. Smith III, “Numerical Computation of Group Delay” in “Introduction to Digital Filters with
Audio Applications”, Center for Computer Research in Music and Acoustics (CCRMA), Stanford Uni-
versity, http://ccrma.stanford.edu/~jos/filters/Numerical_Computation_Group_Delay.html, referenced
2014-04-02,

[Lyons] Richard Lyons, “Understanding Digital Signal Processing”, 3rd Ed., Prentice Hall, 2010.

[Smith99] Steven W. Smith, “The Scientist and Engineer’s Guide to Digital Signal Processing”, 3rd Ed., 1999,
https://www.DSPguide.com

47

http://ccrma.stanford.edu/~jos/filters/Numerical_Computation_Group_Delay.html
https://www.DSPguide.com

pyfda Documentation, Release 0.5.2

48 Bibliography

Python Module Index

p
pyfda, 43
pyfda.filter_designs, 37
pyfda.filter_designs.bessel, 37
pyfda.filter_factory, 23
pyfda.filterbroker, 25
pyfda.fixpoint_widgets.fir_df, 39
pyfda.input_widgets.input_coeffs, 27
pyfda.input_widgets.input_fixpoint_specs,

38
pyfda.input_widgets.input_info, 31
pyfda.input_widgets.input_pz, 29
pyfda.input_widgets.input_specs, 26
pyfda.input_widgets.input_tab_widgets,

26
pyfda.input_widgets.select_filter, 27
pyfda.plot_widgets.plot_3d, 36
pyfda.plot_widgets.plot_hf, 32
pyfda.plot_widgets.plot_impz, 34
pyfda.plot_widgets.plot_phi, 32
pyfda.plot_widgets.plot_pz, 33
pyfda.plot_widgets.plot_tab_widgets,

31
pyfda.plot_widgets.plot_tau_g, 33

49

pyfda Documentation, Release 0.5.2

50 Python Module Index

Index

A
align_y_axes() (pyfda.plot_widgets.plot_hf.Plot_Hf

method), 32

B
base_dir (in module pyfda.filterbroker), 25
Bessel (class in pyfda.filter_designs.bessel), 37

C
calc_auto() (pyfda.plot_widgets.plot_impz.Plot_Impz

method), 34
calc_fft() (pyfda.plot_widgets.plot_impz.Plot_Impz

method), 34
calc_hf() (pyfda.plot_widgets.plot_hf.Plot_Hf

method), 32
calc_resp() (pyfda.plot_widgets.plot_phi.Plot_Phi

method), 32
calc_response() (pyfda.plot_widgets.plot_impz.Plot_Impz

method), 35
calc_stimulus() (pyfda.plot_widgets.plot_impz.Plot_Impz

method), 35
calc_tau_g() (pyfda.plot_widgets.plot_tau_g.Plot_tau_g

method), 33
call_fil_method()

(pyfda.filter_factory.FilterFactory method),
23

classes (in module pyfda.filter_designs.bessel), 37
classes (in module pyfda.fixpoint_widgets.fir_df),

40
classes (in module

pyfda.input_widgets.input_coeffs), 29
classes (in module

pyfda.input_widgets.input_fixpoint_specs),
39

classes (in module pyfda.input_widgets.input_info),
31

classes (in module pyfda.input_widgets.input_pz),
30

classes (in module
pyfda.input_widgets.input_specs), 27

classes (in module pyfda.plot_widgets.plot_3d), 36
classes (in module pyfda.plot_widgets.plot_hf), 32
classes (in module pyfda.plot_widgets.plot_impz),

36

classes (in module pyfda.plot_widgets.plot_phi), 33
classes (in module pyfda.plot_widgets.plot_pz), 34
classes (in module pyfda.plot_widgets.plot_tau_g),

33
clipboard (in module pyfda.filterbroker), 25
cmplx2frmt() (pyfda.input_widgets.input_pz.Input_PZ

method), 29
construct_fixp_filter()

(pyfda.fixpoint_widgets.fir_df.FIR_DF_wdg
method), 39

create_fil_inst()
(pyfda.filter_factory.FilterFactory method),
24

createEditor() (pyfda.input_widgets.input_coeffs.ItemDelegate
method), 28

createEditor() (pyfda.input_widgets.input_pz.ItemDelegate
method), 30

D
design_filt_state (in module

pyfda.filterbroker), 25
dict2ui() (pyfda.fixpoint_widgets.fir_df.FIR_DF_wdg

method), 39
displayText() (pyfda.input_widgets.input_coeffs.ItemDelegate

method), 28
displayText() (pyfda.input_widgets.input_pz.ItemDelegate

method), 30
displayText() (pyfda.input_widgets.input_pz.ItemDelegateAnti

method), 30
draw() (pyfda.plot_widgets.plot_3d.Plot_3D

method), 36
draw() (pyfda.plot_widgets.plot_hf.Plot_Hf method),

32
draw() (pyfda.plot_widgets.plot_impz.Plot_Impz

method), 35
draw() (pyfda.plot_widgets.plot_phi.Plot_Phi

method), 32
draw_3d() (pyfda.plot_widgets.plot_3d.Plot_3D

method), 36
draw_data() (pyfda.plot_widgets.plot_impz.Plot_Impz

method), 35
draw_freq() (pyfda.plot_widgets.plot_impz.Plot_Impz

method), 35

51

pyfda Documentation, Release 0.5.2

draw_Hf() (pyfda.plot_widgets.plot_pz.Plot_PZ
method), 33

draw_inset() (pyfda.plot_widgets.plot_hf.Plot_Hf
method), 32

draw_phase() (pyfda.plot_widgets.plot_hf.Plot_Hf
method), 32

draw_pz() (pyfda.plot_widgets.plot_pz.Plot_PZ
method), 33

draw_response_fx()
(pyfda.plot_widgets.plot_impz.Plot_Impz
method), 35

draw_time() (pyfda.plot_widgets.plot_impz.Plot_Impz
method), 35

E
embed_fixp_img()

(pyfda.input_widgets.input_fixpoint_specs.Input_Fixpoint_Specs
method), 38

eventFilter() (pyfda.input_widgets.input_fixpoint_specs.Input_Fixpoint_Specs
method), 38

eventFilter() (pyfda.input_widgets.input_pz.Input_PZ
method), 29

eventFilter() (pyfda.plot_widgets.plot_tab_widgets.PlotTabWidgets
method), 31

exportHDL() (pyfda.input_widgets.input_fixpoint_specs.Input_Fixpoint_Specs
method), 38

F
fil_factory (in module pyfda.filter_factory), 25
fil_inst (in module pyfda.filter_factory), 25
filter_classes (in module pyfda.filterbroker), 26
FilterFactory (class in pyfda.filter_factory), 23
FIR_DF_wdg (class in pyfda.fixpoint_widgets.fir_df),

39
frmt2cmplx() (pyfda.input_widgets.input_pz.Input_PZ

method), 29
ft (pyfda.filter_designs.bessel.Bessel attribute), 37
fx_select() (pyfda.plot_widgets.plot_impz.Plot_Impz

method), 35
fx_sim_init() (pyfda.input_widgets.input_fixpoint_specs.Input_Fixpoint_Specs

method), 38
fx_sim_set_stimulus()

(pyfda.input_widgets.input_fixpoint_specs.Input_Fixpoint_Specs
method), 38

I
impz() (pyfda.plot_widgets.plot_impz.Plot_Impz

method), 36
info (pyfda.filter_designs.bessel.Bessel attribute), 37
init_axes() (pyfda.plot_widgets.plot_3d.Plot_3D

method), 36
init_axes() (pyfda.plot_widgets.plot_hf.Plot_Hf

method), 32
init_axes() (pyfda.plot_widgets.plot_phi.Plot_Phi

method), 32
init_axes() (pyfda.plot_widgets.plot_pz.Plot_PZ

method), 33

init_axes() (pyfda.plot_widgets.plot_tau_g.Plot_tau_g
method), 33

initStyleOption()
(pyfda.input_widgets.input_coeffs.ItemDelegate
method), 28

initStyleOption()
(pyfda.input_widgets.input_pz.ItemDelegate
method), 30

Input_Coeffs (class in
pyfda.input_widgets.input_coeffs), 27

Input_Fixpoint_Specs (class in
pyfda.input_widgets.input_fixpoint_specs),
38

Input_Info (class in
pyfda.input_widgets.input_info), 31

Input_PZ (class in pyfda.input_widgets.input_pz), 29
Input_Specs (class in

pyfda.input_widgets.input_specs), 26
InputTabWidgets (class in

pyfda.input_widgets.input_tab_widgets),
26

ItemDelegate (class in
pyfda.input_widgets.input_coeffs), 28

ItemDelegate (class in
pyfda.input_widgets.input_pz), 30

ItemDelegateAnti (class in
pyfda.input_widgets.input_pz), 30

L
load_dict() (pyfda.input_widgets.input_coeffs.Input_Coeffs

method), 28
load_dict() (pyfda.input_widgets.input_info.Input_Info

method), 31
load_dict() (pyfda.input_widgets.input_pz.Input_PZ

method), 29
load_dict() (pyfda.input_widgets.input_specs.Input_Specs

method), 26
load_dict() (pyfda.input_widgets.select_filter.SelectFilter

method), 27
load_filter_order()

(pyfda.input_widgets.select_filter.SelectFilter
method), 27

log_rx() (pyfda.input_widgets.input_tab_widgets.InputTabWidgets
method), 26

log_rx() (pyfda.plot_widgets.plot_tab_widgets.PlotTabWidgets
method), 31

P
Plot_3D (class in pyfda.plot_widgets.plot_3d), 36
Plot_Hf (class in pyfda.plot_widgets.plot_hf), 32
Plot_Impz (class in pyfda.plot_widgets.plot_impz),

34
Plot_Phi (class in pyfda.plot_widgets.plot_phi), 32
Plot_PZ (class in pyfda.plot_widgets.plot_pz), 33
plot_spec_limits()

(pyfda.plot_widgets.plot_hf.Plot_Hf method),
32

52 Index

pyfda Documentation, Release 0.5.2

Plot_tau_g (class in
pyfda.plot_widgets.plot_tau_g), 33

PlotTabWidgets (class in
pyfda.plot_widgets.plot_tab_widgets),
31

process_sig_rx()
(pyfda.input_widgets.input_coeffs.Input_Coeffs
method), 28

process_sig_rx()
(pyfda.input_widgets.input_fixpoint_specs.Input_Fixpoint_Specs
method), 39

process_sig_rx()
(pyfda.input_widgets.input_info.Input_Info
method), 31

process_sig_rx()
(pyfda.input_widgets.input_pz.Input_PZ
method), 30

process_sig_rx()
(pyfda.input_widgets.input_specs.Input_Specs
method), 26

process_sig_rx()
(pyfda.plot_widgets.plot_3d.Plot_3D
method), 36

process_sig_rx()
(pyfda.plot_widgets.plot_hf.Plot_Hf method),
32

process_sig_rx()
(pyfda.plot_widgets.plot_impz.Plot_Impz
method), 36

process_sig_rx()
(pyfda.plot_widgets.plot_phi.Plot_Phi
method), 32

process_sig_rx()
(pyfda.plot_widgets.plot_pz.Plot_PZ
method), 33

process_sig_rx()
(pyfda.plot_widgets.plot_tau_g.Plot_tau_g
method), 33

process_sig_rx_local()
(pyfda.input_widgets.input_specs.Input_Specs
method), 26

pyfda (module), 43
pyfda.filter_designs (module), 37
pyfda.filter_designs.bessel (module), 37
pyfda.filter_factory (module), 23
pyfda.filterbroker (module), 25
pyfda.fixpoint_widgets.fir_df (module),

39
pyfda.input_widgets.input_coeffs (mod-

ule), 27
pyfda.input_widgets.input_fixpoint_specs

(module), 38
pyfda.input_widgets.input_info (module),

31
pyfda.input_widgets.input_pz (module), 29
pyfda.input_widgets.input_specs (mod-

ule), 26
pyfda.input_widgets.input_tab_widgets

(module), 26
pyfda.input_widgets.select_filter

(module), 27
pyfda.plot_widgets.plot_3d (module), 36
pyfda.plot_widgets.plot_hf (module), 32
pyfda.plot_widgets.plot_impz (module), 34
pyfda.plot_widgets.plot_phi (module), 32
pyfda.plot_widgets.plot_pz (module), 33
pyfda.plot_widgets.plot_tab_widgets

(module), 31
pyfda.plot_widgets.plot_tau_g (module),

33

Q
qdict2ui() (pyfda.input_widgets.input_coeffs.Input_Coeffs

method), 28
quant_coeffs() (pyfda.input_widgets.input_coeffs.Input_Coeffs

method), 28
quit_program() (pyfda.input_widgets.input_specs.Input_Specs

method), 26

R
redraw() (pyfda.plot_widgets.plot_3d.Plot_3D

method), 36
redraw() (pyfda.plot_widgets.plot_hf.Plot_Hf

method), 32
redraw() (pyfda.plot_widgets.plot_impz.Plot_Impz

method), 36
redraw() (pyfda.plot_widgets.plot_phi.Plot_Phi

method), 32
redraw() (pyfda.plot_widgets.plot_pz.Plot_PZ

method), 33
redraw() (pyfda.plot_widgets.plot_tau_g.Plot_tau_g

method), 33
resize_img() (pyfda.input_widgets.input_fixpoint_specs.Input_Fixpoint_Specs

method), 39
run_sim() (pyfda.fixpoint_widgets.fir_df.FIR_DF_wdg

method), 39

S
SelectFilter (class in

pyfda.input_widgets.select_filter), 27
setEditorData() (pyfda.input_widgets.input_coeffs.ItemDelegate

method), 29
setEditorData() (pyfda.input_widgets.input_pz.ItemDelegate

method), 30
setModelData() (pyfda.input_widgets.input_coeffs.ItemDelegate

method), 29
setModelData() (pyfda.input_widgets.input_pz.ItemDelegate

method), 30
setup_signal_slot()

(pyfda.input_widgets.input_pz.Input_PZ
method), 30

start_design_filt()
(pyfda.input_widgets.input_specs.Input_Specs
method), 26

Index 53

pyfda Documentation, Release 0.5.2

T
tb_wdg_stim() (pyfda.fixpoint_widgets.fir_df.FIR_DF_wdg

method), 39
text() (pyfda.input_widgets.input_coeffs.ItemDelegate

method), 29
text() (pyfda.input_widgets.input_pz.ItemDelegate

method), 30
to_verilog() (pyfda.fixpoint_widgets.fir_df.FIR_DF_wdg

method), 39

U
ui2dict() (pyfda.fixpoint_widgets.fir_df.FIR_DF_wdg

method), 39
ui2qdict() (pyfda.input_widgets.input_coeffs.Input_Coeffs

method), 28
unit_changed() (pyfda.plot_widgets.plot_phi.Plot_Phi

method), 32
update_accu_settings()

(pyfda.fixpoint_widgets.fir_df.FIR_DF_wdg
method), 40

update_fxqc_dict()
(pyfda.input_widgets.input_fixpoint_specs.Input_Fixpoint_Specs
method), 39

update_q_coeff()
(pyfda.fixpoint_widgets.fir_df.FIR_DF_wdg
method), 40

update_UI() (pyfda.input_widgets.input_specs.Input_Specs
method), 27

update_view() (pyfda.plot_widgets.plot_hf.Plot_Hf
method), 32

update_view() (pyfda.plot_widgets.plot_phi.Plot_Phi
method), 32

update_view() (pyfda.plot_widgets.plot_pz.Plot_PZ
method), 33

update_view() (pyfda.plot_widgets.plot_tau_g.Plot_tau_g
method), 33

W
wdg_dict2ui() (pyfda.input_widgets.input_fixpoint_specs.Input_Fixpoint_Specs

method), 39

Z
zplane() (pyfda.plot_widgets.plot_pz.Plot_PZ

method), 33

54 Index

	User Manual
	Input Specs
	Input Coeffs
	Input P/Z
	Input Info
	Input Files
	Fixpoint Specs
	Plot H(f)
	Plot Phi(f)
	Plot tau(f)
	Plot P/Z
	Plot h[n]
	Plot 3D
	Customization

	Development
	Software Organization
	Signalling: What’s up?
	Persistence: Where’s the data?
	Main Routines
	Libraries
	Package input_widgets
	Package plot_widgets
	Package filter_designs
	Package fixpoint_widgets

	Literature
	API documentation
	pyfda – Main package

	Indices and tables
	Bibliography
	Python Module Index
	Index

