
pyfda Documentation
Release v0.9.0b1

Christian Muenker

Apr 09, 2024

CONTENTS:

1 pyfda 1
1.1 Python Filter Design Analysis Tool . 1
1.2 License . 1
1.3 Installing, running and uninstalling pyfda . 1
1.4 Building pyfda . 3
1.5 Customization . 3
1.6 Features . 4
1.7 Why yet another filter design tool? . 5
1.8 Release History / Roadmap . 5
1.9 Planned features . 5

2 User Manual 7
2.1 Input Specs . 7
2.2 Input Coeffs . 11
2.3 Input P/Z . 13
2.4 Input Info . 15
2.5 Fixpoint Specs . 17
2.6 Plot H(f) . 20
2.7 Plot Phi(f) . 21
2.8 Plot tau(f) . 22
2.9 Plot P/Z . 22
2.10 Plot y[n] . 25
2.11 Plot 3D . 27
2.12 Fixpoint Arithmetics . 28
2.13 Logger Subwindow . 31
2.14 Customization . 32

3 Development 43
3.1 Software Organization . 43
3.2 Signalling: What’s up? . 44
3.3 Persistence: Where’s the data? . 45
3.4 Main Routines . 46
3.5 Libraries . 54
3.6 Package input_widgets . 54
3.7 Package plot_widgets . 55
3.8 Package filter_widgets . 55
3.9 Package fixpoint_widgets . 56

4 Literature 57

5 API documentation 59
5.1 pyfda – Main package . 59

6 Indices and tables 61

i

Bibliography 63

Python Module Index 65

Index 67

ii

CHAPTER

ONE

PYFDA

1.1 Python Filter Design Analysis Tool

pyfda is a tool written in Python / Qt for analyzing and designing discrete time filters with a user-friendly GUI.
Fixpoint filter implementations (for some filter types) can be simulated and tested for overflow and quantization
behaviour in the time and frequency domain.

docs/source/screenshots/pyfda_screenshot.png

1.2 License

pyfda source code ist distributed under a permissive MIT license, binaries / bundles come with a GPLv3 license
due to bundled components with stricter licenses.

1.3 Installing, running and uninstalling pyfda

For details, see INSTALLATION.md.

1

https://badge.fury.io/py/pyfda
https://pepy.tech/project/pyfda
https://readthedocs.org/projects/pyfda/?badge=latest
https://github.com/chipmuenk/pyfda/actions/workflows/build_pyinstaller.yml
https://github.com/chipmuenk/pyfda/actions/workflows/build_flatpak.yml
docs/source/screenshots/pyfda_screenshot.png
INSTALLATION.md

pyfda Documentation, Release v0.9.0b1

1.3.1 Binaries

Binaries can be downloaded under Releases for versioned releases and for a latest release, automatically created
for each push to the main branch.

Self-extracting archives for 64 bit Windows, OS X and Ubuntu Linux are created with `pyInstaller
<https://www.pyinstaller.org/>`_. The archives self-extract to a temporary directory that is automatically deleted
when pyfda is terminated (except when it crashes), they don’t modify the system except for two ASCII configura-
tion files and a log file. No additional software / libraries need to be installed, there is no interaction with existing
python installations and you can simply overwrite or delete the executables when updating. After downloading the
Linux archive, you need to make it executable (chmod 775 pyfda_linux).

Binaries for Linux are created as Flatpaks as well (currently defunct) which can also be downloaded from
`Flathub <https://flathub.org/apps/details/com.github.chipmuenk.pyfda>`_. Many Linux distros have built-
in flatpak support, for others it’s easy to install with e.g. sudo apt install flatpak. For details check the
Flatpak home page.

1.3.2 pip

Supported Python versions are 3.7 . . . 3.11, there is only one version of pyfda for all operating systems at PyPI.
As pyfda is a pure Python project (no compilation required), you can install pyfda the usual way, required libraries
are downloaded automatically if missing:

> pip install pyfda

Upgrade:

> pip install pyfda -U

Uninstall:

> pip uninstall pyfda

Starting pyfda

A pip installation creates a start script pyfdax in <python>/Scripts which should be in your path. So, simply
start pyfda using

> pyfdax

The following libraries are required and installed automatically by pip when missing.

• **PyQt** and **Qt5**

• **numpy**

• **numexpr**

• **scipy**: 1.2.0 or higher

• **matplotlib**: 3.1 or higher

• **Markdown**

Optional libraries:
• **mplcursors** for annotating cursors

• **docutils** for rich text in documentation

• xlwt and / or XlsxWriter for exporting filter coefficients as *.xls(x) files

2 Chapter 1. pyfda

https://github.com/chipmuenk/pyfda/releases
https://www.flatpak.org/
https://pypi.org/project/pyfda/
https://www.riverbankcomputing.com/software/pyqt/
https://qt.io/
https://numpy.org/
https://github.com/pydata/numexpr
https://scipy.org/
https://matplotlib.org/
https://github.com/Python-Markdown/markdown
https://mplcursors.readthedocs.io/
https://docutils.sourceforge.io

pyfda Documentation, Release v0.9.0b1

1.3.3 conda

If you’re working with Anaconda’s packet manager conda, there is a recipe for pyfda on conda-forge since July
2023:

> conda install --channel=conda-forge pyfda

You should install pyfda into a new environment to avoid unwanted interaction with other installations.

Start pyfda with

> pyfdax

1.3.4 git

If you want to contribute to pyfda (great idea!), fork the latest version from https://github.com/chipmuenk/pyfda.git
and create a local copy using

> git clone https://github.com/<your_username>pyfda

This command creates a new folder pyfda at your current directory level and copies the complete pyfda project
into it. This Github tutorial provides a good starting point for working with git repos.

pyfda can then be installed (i.e. creating local config files and the pyfdax starter script) from local files using

> pip install -e <YOUR_PATH_TO_PYFDA_setup.py>

Now you can edit the code and test it. If you’re happy with it, push it to your repo and create a Pull Request so that
the code can be reviewed and merged into the chipmuenk/pyfda repo.

1.4 Building pyfda

For details on how to publish pyfda to PyPI, how to create pyInstaller and Flatpak bundles, see BUILDING.md.

1.5 Customization

The location of the following two configuration files (copied to user space) can be checked via the tab Files ->
About:

• Logging verbosity can be controlled via the file pyfda_log.conf

• Widgets and filters can be enabled / disabled via the file pyfda.conf. You can also define one or more user
directories containing your own widgets and / or filters.

Layout and some default paths can be customized using the file pyfda/pyfda_rc.py, at the moment you have to
edit that file at its original location.

1.4. Building pyfda 3

https://github.com/chipmuenk/pyfda.git
https://docs.github.com/en/get-started/quickstart/fork-a-repo
BUILDING.md

pyfda Documentation, Release v0.9.0b1

1.6 Features

1.6.1 Filter design

• Design methods: Equiripple, Firwin, Moving Average, Bessel, Butterworth, Elliptic, Chebyshev 1 and 2
(from scipy.signal and custom methods)

• Second-Order Sections are used in the filter design when available for more robust filter design and analysis

• Fine-tune manually the filter order and corner frequencies calculated by minimum order algorithms

• Compare filter designs for a given set of specifications and different design methods

• Filter coefficients and poles / zeroes can be displayed, edited and quantized in various formats

1.6.2 User Interface

• only widgets needed for the currently selected design method are visible

• specifications are remembered when switching between filter design methods

• enhanced Matplotlib NavigationToolbar (nicer icons, additional functions)

• tooltips for all UI widgets and help files

• specify frequencies as absolute values or normalized to sampling or Nyquist frequency

• specify ripple and attenuations in dB, as voltage or as power ratios

• enter values as expressions like exp(-pi/4 * 1j) using numexpr syntax

1.6.3 Graphical Analyses

• Magnitude response (lin / power / log) with optional display of specification bands, phase and an inset plot

• Phase response (wrapped / unwrapped) and group delay

• Pole / Zero plot

• Transient response (impulse, step and various stimulus signals) in the time and frequency domain. Define
your own stimuli like abs(sin(2*pi*n*f1)) using numexpr syntax and the UI.

• 3D-Plots (|H(f)|, mesh, surface, contour) with optional pole / zero display

1.6.4 Modular Architecture

Facilitate the implementation of new filter design / analysis / display methods. Generate your own

• Filter design widgets with your algorithm

• Plotting widgets

• Input widgets

• Fixpoint filter widgets, using the integrated Fixed() class

4 Chapter 1. pyfda

https://github.com/pydata/numexpr
https://github.com/pydata/numexpr

pyfda Documentation, Release v0.9.0b1

1.6.5 Import / Export

• Filter designs in pickled and in numpy’s NPZ-format

• Coefficients and poles/zeros as comma-separated values (CSV) in numpy’s NPY- and NPZ-formats, in Excel
(R), as a Matlab (R) workspace or in FPGA vendor specific formats like Xilinx (R) COE-format

• Transient stimuli (y[n] tab) as wav and csv files

1.7 Why yet another filter design tool?

• Education: Provide an easy-to-use FOSS tool for demonstrating basic digital stuff and filter design interac-
tively that also works with the limited resolution of a beamer.

• Show-off: Demonstrate that Python is a potent tool for digital signal processing as well.

• Fixpoint filter design: Recursive fixpoint filter design has become a niche for experts. Convenient design
and simulation support (round-off noise, stability under different quantization options and topologies) could
attract more designers to these filters that are easier on hardware resources and much more suitable especially
for uCs and low-budget FPGAs.

1.8 Release History / Roadmap

For details, see CHANGELOG.md.

1.9 Planned features

1.9.1 Started

• Dark mode

• HDL filter implementation: Implementing a fixpoint filter in VHDL / Verilog without errors requires some
experience, verifying the correct performance in a digital design environment with very limited frequency
domain simulation options is even harder.

1.9.2 Ideas (help wanted)

• Keep multiple designs in memory, switch between them, compare results and store the whole set

• Graphical modification of poles / zeros

• Document filter designs in PDF / HTML format

• Design, analysis and export of filters as second-order sections, display and edit them in the P/Z widget

• Multiplier-free filter designs (CIC, GCIC, LDI, ΣΔ, . . .) for fixpoint filters with a low number
of multipliers (or none at all)

• Analysis of different fixpoint filter topologies (direct form, cascaded form, parallel form, . . .) concerning
overflow and quantization noise

1.7. Why yet another filter design tool? 5

./CHANGELOG.md

pyfda Documentation, Release v0.9.0b1

6 Chapter 1. pyfda

CHAPTER

TWO

USER MANUAL

Fig. 2.1: Screenshot of pyfda

Fig. 2.1 shows the main pyfda screen with three subwindows that can be resized with the handles (red dots).

The tabs on the left-hand side access widgets to enter and view various specification and parameters for the filter /
system to be designed resp. analyzed.

2.1 Input Specs

Fig. 2.2 shows a typical view of the Specs tab.

“Load” and “Save” . . . well, loads and saves complete filter designs. Coefficients and poles / zeros
can be imported and exported in the “b,a” resp. the “P/Z” tab.

For the actual filter design, you can specify the kind of filter to be designed and its specifications in
the frequency domain:

• Response type (low pass, band pass, . . .)

• Filter type (IIR for a recursive filter with infinite impulse response or FIR for a non-recursive
filter with finite impulse response)

• Filter class (elliptic, . . .) allowing you to select the filter design algorithm

7

pyfda Documentation, Release v0.9.0b1

Fig. 2.2: Screenshot of specs input window

Not all combinations of design algorithms and response types are available - you won’t be offered
unavailable combinations and some fields may be greyed out.

2.1.1 Order

The order of the filter, i.e. the number of poles / zeros / delays is either specified manually or the
minimum order can be estimated for many filter algorithms to fulfill a set of given specifications.

2.1.2 Frequency Unit

In DSP, specifications and frequencies are expressed in different ways:

𝐹 =
𝑓

𝑓𝑆
or Ω =

2𝜋𝑓

𝑓𝑆
= 2𝜋𝐹

In pyfda, you can enter parameters as absolute frequency 𝑓 , as normalized frequency 𝐹 w.r.t. to the
Sampling Frequency 𝑓𝑆 or to the Nyquist Frequency 𝑓𝑁𝑦 = 𝑓𝑆/2 (Fig. 2.3):

2.1.3 Amplitude Unit

Amplitude specification can be entered as V, dB or W; they are converted automatically. Conversion
depends on the filter type (IIR vs. FIR) and whether pass or stop band are specified. For details see
the conversion functions pyfda.libs.pyfda_lib.unit2lin() and pyfda.libs.pyfda_lib.
lin2unit().

8 Chapter 2. User Manual

pyfda Documentation, Release v0.9.0b1

Fig. 2.3: Displaying normalized frequencies

2.1.4 Background Info

Sampling Frequency

One of the most important parameters in a digital signal processing system is the sampling frequency
𝑓𝑆𝑓𝑆𝑓𝑆 , defining the clock frequency with which the registers (flip-flops) in the system are updated. In a
simple DSP system, the clock frequency of ADC, digital filter and DAC might be identical:

Fig. 2.4: A simple signal processing system

Sometimes it makes sense to change the sampling frequency in the processing system e.g. to reduce
the sampling rate of an oversampling ADC or to increase the clocking frequency of an DAC to ease
and improve reconstruction of the analog signal.

2.1. Input Specs 9

pyfda Documentation, Release v0.9.0b1

Fig. 2.5: A signal processing system with multiple sampling frequencies

Aliasing and Nyquist Frequency

When the sampling frequency is too low, significant information is lost in the process and the sig-
nal cannot be reconstructed without errors (forth image in Fig. 2.6) [Smith99]. This effect is called
aliasing.

Fig. 2.6: Sampling with 𝑓𝑆 = 1000 Hz of sinusoids with 4 different frequencies

When sampling with 𝑓𝑆 , the maximum signal bandwidth 𝐵 that can represented and reconstructed
without errors is given by 𝐵 < 𝑓𝑆/2 = 𝑓𝑁𝑦 . This is also called the Nyquist frequency or bandwidth
𝑓𝑁𝑦 . Some filter design tools and algorithms normalize frequencies w.r.t. to 𝑓𝑁𝑦 instead of 𝑓𝑆 .

10 Chapter 2. User Manual

pyfda Documentation, Release v0.9.0b1

2.1.5 Development

More info on this widget can be found under input_specs.

2.2 Input Coeffs

Fig. 2.7 shows a typical view of the b,a tab where you can view and edit the filter coefficients. Coef-
ficient values are updated every time you design a new filter or update the poles / zeros.

Fig. 2.7: Screenshot of the coefficients tab for floating point coefficients

In the top row, the display of the coefficients can be disabled as a coefficient update can be time
consuming for high order filters (𝑁 > 100).

2.2.1 Quantization format

By default, coefficients are displayed in float quantization format, the format returned by the filter
design algorithm, with a selectable number of decimal places. Internally, full precision is always
used.

However, many hardware platforms with limited computing resources like uCs can only perform fix-
point arithmetics. Here, scaling and wordlength have a strong influence on the obtainable accuracy.

It is important to understand that the quantization format only influences the display of the coefficients,
the frequency response etc. is only updated when the quantize icon (the staircase) is clicked. Only
when you do a fixpoint simulation or generate Verilog code from the fixpoint tab, the selected word
format is used for the coefficients.

2.2.2 Fixpoint

When the format is set to fractional or integer, the fixpoint options are displayed as in Fig. 2.8. Here,
the format Binary has been set.

2.2. Input Coeffs 11

pyfda Documentation, Release v0.9.0b1

Fig. 2.8: Screenshot of the coefficients tab for fixpoint formats (binary display)

Fixpoint Formats

Any other format (Binary, Hex, Decimal, CSD) is a fixpoint format with a fixed number of binary
places which activates further display options. These formats (except for CSD) are based on the integer
value i.e. by simply interpreting the bits as an integer value INT with the MSB as the sign bit.

The scale between floating (“Real World Value”, RWV) and fixpoint format is determined by parti-
tioning the word length W into integer and fractional places WI and WF with total word length W = WI
+ WF + 1 where the “+ 1” accounts for the sign bit.

Three kinds of partioning can be selected in a combo box:

• The integer format has no fractional bits, WF = 0 and
W = WI + 1. This is the format used by amaranth as well, RWV = INT

• The normalized fractional format has no integer bits, WI = 0 and
W = WF + 1.

• The general fractional format has an arbitrary number of fractional
and integer bits, W = WI + WF + 1.

In any case, scaling is determined by the number of fractional bits, 𝑅𝑊𝑉 = 𝐼𝑁𝑇 · 2−𝑊𝐹 .

𝑐2 = 𝑎2 + 𝑏2

In addition to setting the position of the binary point you can select the behaviour for:

• Quantization: The very high precision of the floating point format
needs to be reduced for the fixpoint representation. Here you can select between floor
(truncate the LSBs), round (classical rounding) and fix (always round to the next smallest
magnitude value)

12 Chapter 2. User Manual

pyfda Documentation, Release v0.9.0b1

• Saturation: When the floating point number is outside the range of
the fixpoint format, either two’s complement overflow occurs (wrap) or the value is clipped
to the maximum resp. minimum (“saturation”, sat)

More info on fixpoint arithmetics can be found under Fixpoint Arithmetics.

2.2.3 Development

More info on this widget can be found under input_coeffs.

2.3 Input P/Z

Fig. 2.9 shows a typical view of the P/Z tab where you can view and edit the filter poles and zeros.
Pole / zero values are updated every time you design a new filter. After editing poles or zeros by hand,
the changes have to be applied via the (highlighted) button “Apply P/Z to filter”.

In real-valued systems (i.e. systems with a real-valued impulse response and real-valued coefficients)
poles and zeros are real-valued or come in conjugate complex pairs. This means they have the same
real part and positive / negative imaginary part, e.g. 𝑝1 = 0.5 + 0.5𝑗 and 𝑝2 = 0.5 − 0.5𝑗 or
𝑧1 = 1∠+ 0.25𝜋 and 𝑧2 = 1∠− 0.25𝜋. Otherwise, you end up with a complex-valued system with
complex-valued coefficients which is not what you want in most cases.

2.3.1 Cartesian format

Fig. 2.9: Screenshot of the pole/zero tab in cartesian format

Poles and zeros are displayed and can be edited in cartesian format (𝑥 and y) by default as shown in
Fig. 2.9.

2.3. Input P/Z 13

pyfda Documentation, Release v0.9.0b1

2.3.2 Polar format

Fig. 2.10: Screenshot of the pole/zero tab in polar format with activated “Format” button

Alternatively, poles and zeros can be displayed and edited in polar format (radius and angle) as shown
in Fig. 2.10. Especially for zeros which often are placed on the unit circle (𝑟 = 1) this format may be
more suitable.

During editing, use the ‘>’ character to separate radius and phase. The phase can be displayed and
entered in the following formats:

• Degrees with a range of ± − 180 . . . + 180, terminate the phase with an ‘o’ or ‘°’ to indicate
degrees.

• Rad with a range of ±− 𝜋 . . .+ 𝜋, simply enter the value or terminate the phase with an ‘r’ or
with ‘rad’ to indicate rads.

• Multiples of pi with a range of ± − 1 . . . + 1, terminate the phase with a ‘p’ or ‘pi’ to specifiy
multiples of pi.

When entering poles or zeros, the format is chosen automatically, depending on which special char-
acters (like ‘<’, ‘o’, ‘r’ or ‘pi’) have been found in the text field.

You can “misuse” this feature as a converter between different number formats:

• ‘3<0.7854’ or ‘3<0.7854r’ or ‘3<0.7854rad’

• ‘3<0.25p’ or ‘3<0.25pi’

• ‘3<45°’ or ‘3<45o’

• 2.12132+2.12132j

all represent the same value. You can omit the radius if 𝑟 = 1, simply enter ‘<45°’ instead of ‘1<45°’.

Use the corresponding icons to enter a new row or delete one. The trash can deletes the whole table.

14 Chapter 2. User Manual

pyfda Documentation, Release v0.9.0b1

Saving and Loading

Poles and zeros can be saved in various file formats (CSV, MAT, NPZ, NPY). CSV file format options
(row or column, delimiter, . . .) are selected in the CSV pop-up menu (the ‘cog’ icon). Independent
of the table display format, coefficients are saved with full precision in complex (cartesian) number
format when the format button (the “star”) is deactivated.

When the format button is activated, values are saved exactly as displayed. This means, cells may be
saved with reduced number of digits and in polar number format, containing special characters like
‘<’.

2.3.3 Development

More info on this widget can be found under input_pz.

2.4 Input Info

The Info tab (Fig. 2.11) displays infos on the current filter design and design algorithm.

Fig. 2.11: Screenshot of the info tab

The buttons in the top row select which information is displayed:

2.4. Input Info 15

pyfda Documentation, Release v0.9.0b1

The H(f) button activates the display of specifications in the frequency domain and how well they are
met. Failed specifications are highlighted in red.

The About button opens a pop-up window with general infos about the software, licensing and module
versions (Fig. 2.12).

Fig. 2.12: Screenshot of the “About” pop-up window

The Debug button enables some debugging options:

• Doc$: Show docstring info from the corresponding python (usually scipy) module.

• RTF: Use Rich Text Format for documentation.

• FiltDict: Display the dictionary containing all current settings of the software. This dictionary
is saved and restored when saving / loading a filter.

• FiltTree: Display the hierarchical tree with all filter widgets that have been detected during the
start of the software

16 Chapter 2. User Manual

pyfda Documentation, Release v0.9.0b1

2.4.1 Development

More info on this widget can be found under input_info.

2.5 Fixpoint Specs

2.5.1 Overview

The Fixpoint tab (Fig. 2.13) provides options for generating and simulating discrete-time filters that
can be implemented in hardware. Hardware implementations for discrete-time filters usually imply
fixpoint arithmetics but this could change in the future as floating point arithmetics can be implemented
on FPGAs using dedicated floating point units (FPUs).

Order and the coefficients have been calculated by a filter design algorithm from the
pyfda.filter_widgets package to meet target filter specifications (usually in the frequency domain).

In this tab, a fixpoint implementation can be selected in the upper left corner (fixpoint filter implemen-
tations are available only for a few filter design algorithms at the moment, most notably IIR filters are
missing).

The fixpoint format of input word 𝑄𝑋 and output word 𝑄𝑌 can be adjusted for all fixpoint filters,
pressing the “lock” button makes the format of input and output word identical. Depending on the
fixpoint filter, other formats (coefficients, accumulator) can be set as well.

In general, Ovfl. combo boxes determine overflow behaviour (Two’s complement wrap around or
saturation), Quant. combo boxes select quantization behaviour between rounding, truncation (“floor”)
or round-towards-zero (“fix”). These methods may not all be implemented for each fixpoint filter.
Truncation is easiest to implement but has an average bias of -1/2 LSB, in contrast, rounding has no
bias but requires an additional adder. Only rounding-towards-zero guarantees that the magnitude of
the rounded number is not larger than the input, thus preventing limit cycles in recursive filters.

Fig. 2.13: Fixpoint parameter entry widget (overflow = wrap)

Typical simulation results are shown in Fig. 2.14 (time domain) and Fig. 2.15 (frequency domain).

Fixpoint filters are inherently non-linear due to quantization and saturation effects, that’s why fre-
quency characteristics can only be derived by running a transient simulation and calculating the Fourier
response afterwards:

The following shows an example of a coefficient in Q2.4 and Q0.3 format using wrap-around and
truncation. It’s easy to see that for simple wrap-around logic, the sign of the result may change.

2.5. Fixpoint Specs 17

pyfda Documentation, Release v0.9.0b1

Fig. 2.14: Fixpoint simulation results (time domain)

Fig. 2.15: Fixpoint simulation results (frequency domain)

18 Chapter 2. User Manual

pyfda Documentation, Release v0.9.0b1

S | WI1 | WI0 . WF0 | WF1 | WF2 | WF3 : WI = 2, WF = 4, W = 7
0 | 1 | 0 . 1 | 0 | 1 | 1 = 43 (INT) or 43/16 = 2 + 11/16␣
→˓(RWV)

.
| S . WF0 | WF1 | WF2 : WI = 0, WF = 3, W = 4

0 . 1 | 0 | 1 = 5 (INT) or 5/8 (RWV)

Summation

Before adding two fixpoint numbers with a different number of integer and/or fractional bits, integer
and fractional word lenghts need to equalized:

• the fractional parts are padded with zeros

• the integer parts need to be sign extended, i.e. with zeros for positive numbers and with ones for
negative numbers

• adding numbers can require additional integer places due to word growth

For this reason, the position of the binary point needs to be

S | WI1 | WI0 . WF0 | WF1 | WF2 | WF3 : WI = 2, WF = 4, W = 7
0 | 1 | 0 . 1 | 0 | 1 | 1 = 43 (INT) or 43/16 = 2 + 11/16␣
→˓(RWV)

+

S | WI1 | WI0 . WF0 | WF1 | WF2 | WF3 : WI = 2, WF = 4, W = 7
0 | 0 | 0 . 1 | 0 | 1 | 0 = 10 (INT) or 10/16 (RWV)

===

S | WI1 | WI0 . WF0 | WF1 | WF2 | WF3 : WI = 2, WF = 4, W = 7
0 | 1 | 1 . 0 | 1 | 0 | 1 = 53 (INT) or 53/16 = 3 + 5/16 (RWV)

More info on fixpoint numbers and arithmetics can be found under Fixpoint Arithmetics.

2.5.2 Configuration

The configuration file pyfda.conf lists the fixpoint classes to be used, e.g. DF1 and DF2. pyfda.
libs.tree_builder.Tree_Builder parses this file and writes all fixpoint modules into the list fb.
fixpoint_widgets_list. The input widget pyfda.input_widgets.input_fixpoint_specs.
Input_Fixpoint_Specs constructs a combo box from this list with references to all successfully
imported fixpoint modules. The currently selected fixpoint widget (e.g. DF1) is imported from pyfda.
fixpoint_widgets together with the referenced image.

2.5.3 Development

More info on this widget can be found under input_widgets.input_fixpoint_specs.

The subwidgets on the right-hand side allow for graphical analyses of the system.

2.5. Fixpoint Specs 19

pyfda Documentation, Release v0.9.0b1

2.6 Plot H(f)

Fig. 2.16 shows a typical view of the |H(f)| tab for plotting the magnitude frequency response.

Fig. 2.16: Screenshot of the |H(f)| tab

You can plot magnitude, real or imaginary part in V (linear), W (squared) or dB (log. scale).

Zero phase removes the linear phase as calculated from the filter order. There is no check whether
the design actually is linear phase, that’s why results may be nonsensical. When the unit is dB or W ,
this option makes no sense and is not available. It also makes no sense when the magnitude of H(f) is
plotted, but it might be interesting to look at the resulting phase.

Depending on the Inset combo box, a small inset plot of the frequency reponse is displayed, changes
of zoom, unit etc. only have an influence on the main plot (“fixed”) or the inset plot (“edit”). This
way, you can e.g. zoom into pass band and stop band in the same plot. The handling still has some
rough edges.

Show specs displays the specifications; the display makes little sense when re(H) or im(H) is plotted.

Phase overlays a plot of the phase, the unit can be set in the phase tab.

20 Chapter 2. User Manual

pyfda Documentation, Release v0.9.0b1

2.6.1 Development

More info on this widget can be found under plot_hf .

2.7 Plot Phi(f)

Fig. 2.17 shows a typical view of the 𝜙(𝑓)𝜙(𝑓)𝜙(𝑓) tab for plotting the phase response of an elliptical filter
(IIR).

Fig. 2.17: Screenshot of the 𝜙(𝑓) tab

You can select the unit for the phase and whether the phase will be wrapped between −𝜋 . . . 𝜋 or not.

2.7. Plot Phi(f) 21

pyfda Documentation, Release v0.9.0b1

2.7.1 Development

More info on this widget can be found under plot_phi.

2.8 Plot tau(f)

Fig. 2.18 shows a typical view of the 𝜏(𝑓)𝜏(𝑓)𝜏(𝑓) tab for plotting the group delay, here, an elliptical filter
(IIR) is shown.

Fig. 2.18: Screenshot of the 𝜏(𝑓) tab

There are no user servicable parts on this tab.

The algorithm for calculating the group delay is explained in detail in
pyfda.libs.pyfda_sig_lib.group_delay().

Show group_delay()

2.8.1 Development

More info on this widget can be found under plot_tau_g.

2.9 Plot P/Z

Fig. 2.19 shows a typical view of the P/Z tab for plotting poles and zeros, here, an elliptical filter (IIR)
is shown.

Optionally, the magnitude frequency response can be plotted around the unit circle to show the influ-
ence of poles and zeros (Fig. 2.20).

22 Chapter 2. User Manual

pyfda Documentation, Release v0.9.0b1

Fig. 2.19: Screenshot of the P/Z tab

2.9. Plot P/Z 23

pyfda Documentation, Release v0.9.0b1

Fig. 2.20: Screenshot of the P/Z tab with overlayed H(f) plot

24 Chapter 2. User Manual

pyfda Documentation, Release v0.9.0b1

2.9.1 Development

More info on this widget can be found under plot_pz.

2.10 Plot y[n]

Fig. 2.21 shows a typical view of the y[n] tab for plotting the transient response and its Fourier trans-
formation, here, for a Chebychev filter (IIR).

Fig. 2.21: Screenshot of the y[n] tab (time domain)

This tab is split into several subwindows:

2.10.1 Time / Frequency (main plotting area)

These vertical tabs select between the time (transient) and frequency (spectral) domain. Signals are
calculated in the time domain and then transformed using Fourier transform.

Time

Frequency

The Fourier transform of the transient signal can be viewed in the vertical tab “Frequency” (Fig. 2.22).
This is especially important for fixpoint simulations where the frequency response cannot be calculated
analytically.

For an transform of periodic signals without leakage effect, (“smeared” spectral lines) take care that:

• The filter has settled sufficiently. Select a suitable value of N0.

• Choose the number of data points N in such a way that an integer number of periods is displayed
(and transformed).

2.10. Plot y[n] 25

pyfda Documentation, Release v0.9.0b1

Fig. 2.22: Screenshot of the y[n] tab (frequency domain)

• The FFT window is set to rectangular. Other windows work as well but they distribute spectral
lines over several bins. When it is not possible to capture an integer number of periods, use
another window as the rectangular window has the worst leakage effect.

2.10.2 Plots

What will be plotted and how.

2.10.3 Stim.

Select the stimulus, its frequency, DC-content, noise . . . When the BL checkbox is checked, the signal
is bandlimited to the Nyquist frequency. Some signals have strong harmonic content which produces
aliasing. This can be seen best in the frequency domain (e.g. for a sawtooth signal with f = 0.15).

DC and Different sorts of noise can be added.

2.10.4 Run

Usually, plots are updated as soon as an option has been changed. This can be disabled with the Auto
checkbox for cases where the simulation takes a long time (e.g. for some fixpoint simulations).

26 Chapter 2. User Manual

pyfda Documentation, Release v0.9.0b1

2.10.5 Development

More info on this widget can be found under plot_impz.

2.11 Plot 3D

Fig. 2.23 shows a typical view of the 3D tab for 3D visualizations of the magnitude frequency response
and poles / zeros. Fig. 2.23 is a surface plot which looks nice but takes the longest time to compute.

Fig. 2.23: Screenshot of the 3D tab (surface plot)

You can plot 3D visualizations of |𝐻(𝑧)| as well as |𝐻(𝑒𝑗𝜔)| along the unit circle (UC).

For faster visualizations, start with a mesh plot (Fig. 2.24) or a contour plot and switch to a surface
plot when you are pleased with scale and view.

2.11.1 Development

More info on this widget can be found under plot_3d.

Some documentation treats general filter design and fixpoint arithmetics stuff.

2.11. Plot 3D 27

pyfda Documentation, Release v0.9.0b1

Fig. 2.24: Screenshot of the 3D tab (mesh plot)

2.12 Fixpoint Arithmetics

2.12.1 Overview

In contrast to floating point numbers, fixpoint numbers have a fixed scaling, requiring more care to
avoid over- or underflows. The same binary word can represent an integer (Fig. 2.25) or a fractional
(Fig. 2.26) number, signed or unsigned. The position of the binary point and whether the MSB repre-
sents the sign bit or not, it is all in the designer’s head . . .

Fig. 2.25: Signed integer number in twos-complement format

The fixpoint format of input word 𝑄𝑋 and output word 𝑄𝑌 can be adjusted for all fixpoint filters,
pressing the “lock” button makes the format of input and output word identical. Depending on the
fixpoint filter, other formats (coefficients, accumulator) can be set as well.

In general, Ovfl. combo boxes determine overflow behaviour (Two’s complement wrap around or
saturation), Quant. combo boxes select quantization behaviour between rounding, truncation (“floor”)
or round-towards-zero (“fix”). These methods may not all be implemented for each fixpoint filter.
Truncation is easiest to implement but has an average bias of -1/2 LSB, in contrast, rounding has no

28 Chapter 2. User Manual

pyfda Documentation, Release v0.9.0b1

Fig. 2.26: Signed fractional number in twos-complement format

bias but requires an additional adder. Only rounding-towards-zero guarantees that the magnitude of
the rounded number is not larger than the input, thus preventing limit cycles in recursive filters.

Typical simulation results are shown in Fig. 2.27, where first the input signal exceeds the numeric range
and then the output signal. The overflow behaviour is set to ‘wrap’, resulting in twos-complement wrap
around with changes in the sign.

Fig. 2.27: Fixpoint filter response with overflows

Sign extension

When increasing the number of integer bits, numbers need to be sign extended, i.e. the new leading
bits need to be filled with the sign bit (Fig. 2.28). Extending the number of fractional bits just requires
zero padding.

Fig. 2.28: Sign extension of integer and fractional numbers

2.12. Fixpoint Arithmetics 29

pyfda Documentation, Release v0.9.0b1

Overflow behaviour

After summation or when reducing the number of integer bits, the result may not fit in the numeric
range.

Discarding one or more leading bits to obtain the desired wordlength is easy but may produce wrap-
arounds. The resulting sign changes can introduce instability and limit-cycle oscillations to the system
(Fig. 2.29, left-hand side).

Saturation (Fig. 2.29, right-hand side) is much more benign but requires a little more effort: Before
adding two numbers, both need to be sign extended by one bit to enable overflow detection. As shown
in Fig. 2.29, when the two leading bits (sign and carry) are 01 or 10, the result exceeds the numeric
range and needs to be replaced by the maximum resp. minimum representable value. When reducing
the number of integer bits, similar checks need to be performed to test for overflows.

Fig. 2.29: Overflow behaviour with wrap-around or saturation

Truncation and rounding

Fig. 2.30: Reducing fractional word length using truncation, rounding and round-towards-zero

30 Chapter 2. User Manual

pyfda Documentation, Release v0.9.0b1

The following shows an example of a positive number in Q2.4 that is converted to Q1.3 format using
truncation. It’s easy to see that for simple wrap-around logic, the sign of the result may change.

S | WI1 | WI0 . WF0 | WF1 | WF2 | WF3 : WI = 2, WF = 4, W = 7
0 | 1 | 0 . 1 | 0 | 1 | 1 = 43 (QINT) or 43/16 = 2 + 11/16␣
→˓(QFRAC)

|
v

S | WI0 . WF0 | WF1 | WF2 : WI = 1, WF = 3, W = 5
1 0 . 1 | 0 | 1 = -32 + 21 = -11 (subtract -2Ŵ for␣

→˓sign bit)
= -16 + 5 = -11 (sign bit as -2^(W -

→˓1))
or -2 + 5/8 = -11 / 8

Summation

Before adding two fixpoint numbers with a different number of integer and/or fractional bits, integer
and fractional word lenghts need to equalized:

• the fractional parts are padded with zeros

• the integer parts need to be sign extended, i.e. with zeros for positive numbers and with ones for
negative numbers

• adding numbers can require additional integer places due to word growth

For this reason, the position of the binary point needs to be respected when summing fixpoint numbers.

S | WI1 | WI0 . WF0 | WF1 | WF2 | WF3 : WI = 2, WF = 4, W = 7
0 | 1 | 0 . 1 | 0 | 1 | 1 = 43 (INT) or 43/16 = 2 + 11/16␣
→˓(RWV)

+

S | WI1 | WI0 . WF0 | WF1 | WF2 | WF3 : WI = 2, WF = 4, W = 7
0 | 0 | 0 . 1 | 0 | 1 | 0 = 10 (INT) or 10/16 (RWV)

=

S | WI1 | WI0 . WF0 | WF1 | WF2 | WF3 : WI = 2, WF = 4, W = 7
0 | 1 | 1 . 0 | 1 | 0 | 1 = 53 (INT) or 53/16 = 3 + 5/16 (RWV)

Products

2.13 Logger Subwindow

The logging window in the lower part of the plotting window can be resized or completely closed. Its content can
be selected, copied or cleared with a right mouse button context menu.

2.13. Logger Subwindow 31

pyfda Documentation, Release v0.9.0b1

2.14 Customization

You can customize pyfda behaviour in some configuration files:

2.14.1 pyfda.conf

A copy of pyfda/pyfda.conf is created in <USER_HOME>/.pyfda/pyfda.conf where it can be edited by the
user to choose which widgets and filters will be included. Fixpoint widgets can be assigned to filter designs and one
or more user directories can be defined if you want to develop and integrate your own widgets (it’s not so hard!):

This file configures filters and plotting routines for pyFDA
--
- Encoding should be either UTF-8 without BOM or standard ASCII
- All lines starting with # or ; are regarded as comments,
inline comments are not allowed
- [Section] starts a new section
- Options and values are separated by a ":" or "=" (e.g. dir1 : /home),
values are optional
- Values are "sanitized" by removing [], ' and "
- Values are split at commas, semicolons or CRs into a list of values
- Values starting with a { are converted to a dict
- "Interpolation" i.e. referencing values within the config file via e.g. ${dir1}
or ${Common:user_dir1} can be used

###################
[Common]
###################
Stop pyfda when the parsed conf file has a lower version than required

version = 4

#--
Define variables than can be referenced in other sections by preceding the
section name, e.g. fir_df1 = ${Common:FIR} is resolved to
fir_df1 = [Equiripple, Firwin, Manual, MA]
#--

#
IIR = [Bessel, Butter, Cheby1, Cheby2, Ellip]
FIR = [Equiripple, Firwin, Manual, MA]

#--
Add paths for special tools (optional):
#--
yosys = "D:\Programme\yosys-win32-mxebin-0.9\yosys.exe"

#--
Add user directory(s) to sys.path (optional):
#--
#
Specify relative or absolute path(s) to one or more user directories. These
directories are searched for the following subdirectories which must be named
like the corresponding pyfda directories:
#

(continues on next page)

32 Chapter 2. User Manual

pyfda Documentation, Release v0.9.0b1

(continued from previous page)

input_widgets # widgets for specifying filter parameters
plot_widgets # widgets for plotting filter properties
filter_widgets # widgets for controlling filter design algorithms
fixpoint_widgets # widgets for specifying fixpoint filters
#
These subdirectories need to contain an (usually empty)
__init__.py file to be recognized as python modules.
#
When a specified directory cannot be found, only a warning is issued.
#--
Uncomment and specify your user directory (optional):
#
#user_dirs = "D:\Daten\design\python\git\pyfda\pyfda\widget_templates",
"/home/muenker/Daten/design/python/user_pyfda"

###
The following sections define which classes will be imported by specifying
the module names (= file names without .py suffix). The actual class names are
obtained from a module level attribute "classes" in each module which can be a:
#
- String, e.g. classes = "MyClassName"
- List, e.g. classes = ["MyClassName1", "MyClassName2"]
- Dict, e.g. classes = {"MyClassName1":"DisplayName1", "MyClassName2":
→˓"DisplayName2"}
#
When no display name is given, the class name is used for tab labels, combo boxes␣
→˓etc.
#
Modules are searched in all directories defined in sys.path and the user dir(s)
and their subdirectories containing __init__.py files (subpackages) with the
names listed above ("input_widgets" etc.)
#
In addition to specifying only the module name, options can be passed as key-
value combinations. Unknown options just raise a warning.

########################
[Input Widgets]
########################
Try to import from the following input widget modules (files) from sys.path
and subdirectories / subpackages named "input_widgets".

input_specs
input_coeffs
input_pz
input_info
input_fixpoint_specs

########################
[Plot Widgets]
########################
Try to import from the following plot widget modules (files) from sys.path
and subdirectories / subpackages named "plot_widgets".

plot_hf : {'opt1':'aaa', 'opt2':'bbb'}
plot_phi

(continues on next page)

2.14. Customization 33

pyfda Documentation, Release v0.9.0b1

(continued from previous page)

plot_tau_g
plot_pz
plot_impz
plot_3d
myplot # this could be the name of your user module

########################
[Filter Widgets]
########################
The specified filter design modules (files) are searched for in sys.path
and in subdirectories / subpackages named "filter_widgets".
#
The optional 'fix' argument defines one or more fixpoint implementations for
the filter design. Unknown fixpoint implementations only raise a warning.
In the "Fixpoint Widgets" section, fixpoint implementation can be assigned
to filter designs as well.

--- IIR ---
super_filter : {'fix':['iir_cascade', 'iir_df1']}
bessel : {'fix':['iir_cascade', 'iir_df1']}
bessel
butter
cheby1 : "yet another option"
cheby1
cheby2 : {'fix':'iir_special'}
cheby2
ellip
ellip_zero # too specialized for general usage

--- FIR ---
equiripple
firwin
ma
delay # still buggy
savitzky_golay # not implemented yet

--- Manual (both FIR and IIR) ---
manual

########################
[Fixpoint Widgets]
########################
Try to import from the following fixpoint widget modules (files) from sys.path
and subdirectories / subpackages named "fixpoint_widgets".
#
Value is a filter design or a list of filter designs for which the fixpoint
widget can be used.

fir_df.fir_df_pyfixp_ui = ${Common:FIR}
iir_df1.iir_df1_pyfixp_ui = ${Common:IIR}
fir_df.fir_df_nmigen_ui = ${Common:FIR}
fx_delay = ['Equiripple', 'Delay'] # need to fix fx_delay and Delay modules

34 Chapter 2. User Manual

pyfda Documentation, Release v0.9.0b1

2.14.2 pyfda_log.conf

A copy of pyfda/pyfda_log.conf is created in <USER_HOME>/.pyfda/pyfda_log.conf where it can be
edited to control logging behaviour:

[loggers]
List of loggers:
- root logger has to be present
- section name is "logger_" + name specified in the keys below. The logger
name is derived automatically in the files-to-be-logged from their
__name__ attribute (i.e. the file name without suffix)
When a file doesn't exist (e.g. no_existo.py)
#
keys=root, pyfdax, pyfda_class, filter_factory, filterbroker,

pyfda_lib, pyfda_sig_lib, pyfda_fix_lib, pyfda_qt_lib, pyfda_io_lib,
pyfda_fft_windows_lib, tree_builder, csv_option_box,
amplitude_specs, freq_specs, freq_units, input_coeffs, input_coeffs_ui,
input_fixpoint_specs, input_info, input_pz, input_pz_ui, input_specs,
input_tab_widgets, select_filter, target_specs,
bessel, equiripple, firwin,
fir_df_pyfixp, fir_df_pyfixp_ui, iir_df1_pyfixp, iir_df1_pyfixp_ui,
mpl_widget, plot_3d, plot_fft_win, plot_hf, plot_impz, plot_impz_ui,
plot_phi, plot_pz, plot_tab_widgets, plot_tau_g,
plot_tran_stim, plot_tran_stim_ui, tran_io, tran_io_ui,
no_existo

[handlers]
List of handlers
keys=consoleHandler,fileHandler,QHandler

[formatters]
List of formatters
keys=simpleFormatter,noDateFormatter,ezFormatter

===
[logger_root]
level=NOTSET
handlers=consoleHandler, QHandler

[logger_pyfdax]
level=INFO
handlers=fileHandler,consoleHandler, QHandler
qualname=pyfda.pyfdax
propagate=0

[logger_pyfda_class]
level=INFO
handlers=fileHandler,consoleHandler, QHandler
qualname=pyfda.pyfda_class
propagate=0

[logger_filter_factory]
level=INFO
handlers=fileHandler,consoleHandler, QHandler
qualname=pyfda.filter_factory
propagate=0

(continues on next page)

2.14. Customization 35

pyfda Documentation, Release v0.9.0b1

(continued from previous page)

[logger_filterbroker]
level=INFO
handlers=fileHandler,consoleHandler, QHandler
qualname=pyfda.filterbroker
propagate=0

#-------------------- libs -------------------
[logger_pyfda_lib]
level=INFO
handlers=fileHandler,consoleHandler, QHandler
qualname=pyfda.libs.pyfda_lib
propagate=0

[logger_pyfda_sig_lib]
level=INFO
handlers=fileHandler,consoleHandler, QHandler
qualname=pyfda.libs.pyfda_sig_lib
propagate=0

[logger_pyfda_fix_lib]
level=INFO
handlers=fileHandler,consoleHandler, QHandler
qualname=pyfda.libs.pyfda_fix_lib
propagate=0

[logger_pyfda_qt_lib]
level=INFO
handlers=fileHandler,consoleHandler, QHandler
qualname=pyfda.libs.pyfda_qt_lib
propagate=0

[logger_pyfda_io_lib]
level=INFO
handlers=fileHandler,consoleHandler, QHandler
qualname=pyfda.libs.pyfda_io_lib
propagate=0

[logger_pyfda_fft_windows_lib]
level=INFO
handlers=fileHandler,consoleHandler, QHandler
qualname=pyfda.libs.pyfda_fft_windows_lib
propagate=0

[logger_tree_builder]
level=INFO
handlers=fileHandler,consoleHandler, QHandler
qualname=pyfda.libs.tree_builder
propagate=0

[logger_csv_option_box]
level=INFO
handlers=fileHandler,consoleHandler, QHandler
qualname=pyfda.libs.csv_option_box
propagate=0

#-------------------- input_widgets -------------------

(continues on next page)

36 Chapter 2. User Manual

pyfda Documentation, Release v0.9.0b1

(continued from previous page)

[logger_amplitude_specs]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.input_widgets.amplitude_specs
propagate=0

[logger_freq_specs]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.input_widgets.freq_specs
propagate=0

[logger_freq_units]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.input_widgets.freq_units
propagate=0

[logger_input_coeffs]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.input_widgets.input_coeffs
propagate=0

[logger_input_coeffs_ui]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.input_widgets.input_coeffs
propagate=0

[logger_input_fixpoint_specs]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.input_widgets.input_fixpoint_specs
propagate=0

[logger_input_info]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.input_widgets.input_info
propagate=0

[logger_input_pz]
level=WARNING
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.input_widgets.input_pz
propagate=0

[logger_input_pz_ui]
level=WARNING
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.input_widgets.input_pz_ui
propagate=0

[logger_input_specs]
level=INFO

(continues on next page)

2.14. Customization 37

pyfda Documentation, Release v0.9.0b1

(continued from previous page)

handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.input_widgets.input_specs
propagate=0

[logger_input_tab_widgets]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.input_widgets.input_tab_widgets
propagate=0

[logger_select_filter]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.input_widgets.select_filter
propagate=0

[logger_target_specs]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.input_widgets.target_specs
propagate=0

#------------------- filter_widgets ---------------------
[logger_bessel]
level=INFO
handlers=fileHandler, consoleHandler,QHandler
qualname=pyfda.filter_widgets.bessel
propagate=0

[logger_equiripple]
level=INFO
handlers=fileHandler, consoleHandler,QHandler
qualname=pyfda.filter_widgets.equiripple
propagate=0

[logger_firwin]
level=INFO
handlers=fileHandler, consoleHandler,QHandler
qualname=pyfda.filter_widgets.firwin
propagate=0
#------------------- fixpoint_widgets ----------------
[logger_fir_df_pyfixp]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.fixpoint_widgets.fir_df.fir_df_pyfixp
propagate=0

[logger_fir_df_pyfixp_ui]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.fixpoint_widgets.fir_df.fir_df_pyfixp_ui
propagate=0

[logger_iir_df1_pyfixp]
level=INFO
handlers=fileHandler,consoleHandler,QHandler

(continues on next page)

38 Chapter 2. User Manual

pyfda Documentation, Release v0.9.0b1

(continued from previous page)

qualname=pyfda.fixpoint_widgets.iir_df1.iir_df1_pyfixp
propagate=0

[logger_iir_df1_pyfixp_ui]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.fixpoint_widgets.iir_df1.iir_df1_pyfixp_ui
propagate=0
#-------------------- plot_widgets -------------------
[logger_mpl_widget]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.plot_widgets.mpl_widget
propagate=0

[logger_plot_3d]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.plot_widgets.plot_3d
propagate=0

[logger_plot_fft_win]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.plot_widgets.logger_plot_fft_win
propagate=0

[logger_plot_hf]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.plot_widgets.plot_hf
propagate=0

[logger_plot_impz]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.plot_widgets.plot_impz
propagate=0

[logger_plot_impz_ui]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.plot_widgets.plot_impz_ui
propagate=0

[logger_plot_phi]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.plot_widgets.plot_phi
propagate=0

[logger_plot_pz]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.plot_widgets.plot_pz
propagate=0

(continues on next page)

2.14. Customization 39

pyfda Documentation, Release v0.9.0b1

(continued from previous page)

[logger_plot_tab_widgets]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.plot_widgets.plot_tab_widgets
propagate=0

[logger_plot_tau_g]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.plot_widgets.plot_tau_g
propagate=0

[logger_plot_tran_stim]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.plot_widgets.tran.plot_tran_stim
propagate=0

[logger_plot_tran_stim_ui]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.plot_widgets.tran.plot_tran_stim_ui
propagate=0

[logger_tran_io]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.plot_widgets.tran.tran_io
propagate=0

[logger_tran_io_ui]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.plot_widgets.tran.tran_io_ui
propagate=0

#------ Test Case, file doesn't exist -----
[logger_no_existo]
level=INFO
handlers=fileHandler,consoleHandler,QHandler
qualname=pyfda.plot_widgets.no_existo
propagate=0
#--

specify how to log to: text console / logging file / GUI logging window
#
For each handler, define the class (implementation), formatting (see next section)
and the minimum logging level (defined by the higher of global and individual level,
e.g. level=INFO prevents all DEBUG level messages).
#---- Console
[handler_consoleHandler]
class=StreamHandler
level=INFO
formatter=noDateFormatter
args=(sys.stdout,)

(continues on next page)

40 Chapter 2. User Manual

pyfda Documentation, Release v0.9.0b1

(continued from previous page)

#---- File
[handler_fileHandler]
class=DynFileHandler # FileHandler is default
level=INFO
formatter=simpleFormatter
args=('pyfda.log', 'w', 'utf-8') # overwrites log file
#args=('pyfda.log','a', 'utf-8') # appends to log file
#---- GUI
[handler_QHandler]
class=QEditHandler
level=INFO
formatter=ezFormatter
args=()

#---

[formatter_simpleFormatter]
format=[%(asctime)s.%(msecs).03d] [%(levelname)7s] [%(name)s:%(lineno)s] %(message)s
for linebreaks simply make one!
datefmt=%Y-%m-%d %H:%M:%S

[formatter_noDateFormatter]
format=[%(levelname)7s] [%(name)s:%(lineno)s] %(message)s

[formatter_ezFormatter]
format=[%(levelname)7s][%(asctime)s.%(msecs).03d] [%(filename)s:%(lineno)d]
→˓%(message)s
datefmt=%H:%M:%S

2.14.3 pyfda_rc.py

Layout and some parameters can be customized with the file pyfda/pyfda_rc.py (within the install directory
right now, no user copy).

2.14. Customization 41

pyfda Documentation, Release v0.9.0b1

42 Chapter 2. User Manual

CHAPTER

THREE

DEVELOPMENT

This part of the documentation describes the features of pyFDA that are relevant for developers.

3.1 Software Organization

The software is organized as shown in the following figure

Fig. 3.1: pyfda Organization

Communication:
The modules communicate via Qt’s signal-slot mechanism (see: Signalling: What’s up?).

Data Persistence:
Common data is stored in dicts that can be accessed globally (see: Persistence: Where’s the data?).

Customization:
The software can be customized a.o. via the file conf.py (see: Customization).

43

pyfda Documentation, Release v0.9.0b1

3.2 Signalling: What’s up?

The figure above shows the general pyfda hierarchy. When parameters or settings are changed in a widget, a Qt
signal is emitted that can be processed by other widgets with a sig_rx slot for receiving information. The dict
dict_sig is attached to the signal as a “payload”, providing information about the sender and the type of event .
sig_rx is connected to the process_sig_rx() method that processes the dict.

Many Qt signals can be connected to one Qt slot and one signal to many slots, so signals of input and plot widgets are
collected in pyfda.input_widgets.input_tab_widgets and pyfda.plot_widgets.plot_tab_widgets
respectively and connected collectively.

When a redraw / calculations can take a long time, it makes sense to perform these operations only when the widget
is visible and store the need for a redraw in a flag.

class MyWidget(QWidget):
sig_resize = pyqtSignal() # emit a local signal upon resize
sig_rx = pyqtSignal(object) # incoming signal
sig_tx = pyqtSignal(object) # outgoing signal
from pyfda.libs.pyfda_qt_lib import emit

def __init__(self, parent):
super(MyWidget, self).__init__(parent)
self.data_changed = True # initialize flags
self.view_changed = True
self.filt_changed = True
self.sig_rx.connect(self.process_sig_rx)
usually done in method ``_construct_UI()``

def process_sig_rx(self, dict_sig=None):
"""
Process signals coming in via subwidgets and sig_rx
"""
if dict_sig['id'] == id(self):

logger.warning("Stopped infinite loop:\n{0}".format(pprint_log(dict_sig)))
return

if self.isVisible():
if 'data_changed' in dict_sig or self.data_changed:

self.recalculate_some_data() # this may take time ...
self.data_changed = False

if 'view_changed' in dict_sig and dict_sig['view_changed'] == 'new_limits'\
or self.view_changed:
self._update_my_plot() # ... while this just updates the display
self.view_changed = False

if 'filt_changed' in dict_sig or self.filt_changed:
self.update_wdg_UI() # new filter needs new UI options
self.filt_changed = False

else:
if 'data_changed' in dict_sig or 'view_changed' in dict_sig:

self.data_changed = True
self.view_changed = True

if 'filt_changed' in dict_sig:
self.filt_changed = True

Data can be transmitted via the global sig_tx signal (referenced by the imported emit() method):

dict_sig = {'fx_sim':'update_data', 'fx_results':some_new_data}
self.emit(dict_sig)

The following dictionary keys are generally used, individual ones can be created as needed.

44 Chapter 3. Development

pyfda Documentation, Release v0.9.0b1

‘id’
Python id(self) reference to the sending widget instance, needed a.o. to prevent infinite loops
which may occur when the rx event is connected to the tx signal. Automatically added by
``emit()`` if not in ``dict_sig``.

‘class’
Class name of the sending widget, usually given as self.__class__.__name__. This can be
used for debugging purposes. Automatically added by ``emit()`` if not in ``dict_sig``.

‘ttl’
Optional, defines the “time-to-live”. The integer value given at definition is decreased every time
emit() is called. When zero is reached, the signal is terminated.

‘filt_changed’
A different filter type (response type, algorithm, . . .) has been selected or loaded, requiring an
update of the UI in some widgets.

‘data_changed’
A filter has been designed and the actual data (e.g. coefficients) has changed, you can add the
(short) name or a data description as the dict value. When this key is sent, most widgets have to
be updated.

‘specs_changed’
Filter specifications have changed - this will influence only a few widgets like the plot_hf wid-
get that plots the filter specifications as an overlay or the input_info widget that compares filter
performance to filter specifications.

‘view_changed’
When e.g. the range of the frequency axis is changed from 0 . . . 𝑓𝑆/2 to −𝑓𝑆/2 . . . 𝑓𝑆/2, this
information can be propagated with the 'view_changed' key.

‘ui_local_changed’
Propagate a change of the UI to the containing widget but not to other widgets, examples are:
- 'ui_local_changed': self.sender().objectName()' to propagate the name of the
emitting subwidget

‘ui_global_changed’
Propagate a change of the UI to other widgets, examples are:

• 'ui_global_changed':'csv' for a change of CSV import / export options

• 'ui_global_changed':'resize' when the parent window has been resized

• 'ui_global_changed':'tab' when a different tab has been selected

‘fx_sim’
Signal the phase / status of a fixpoint simulation (‘finished’, ‘error’)

3.3 Persistence: Where’s the data?

At startup, a dictionary is constructed with information about the filter classes and their methods. The central
dictionary fb.dict is initialized.

3.3. Persistence: Where’s the data? 45

pyfda Documentation, Release v0.9.0b1

3.4 Main Routines

3.4.1 pyfda.libs.pyfda_dirs

Handle directories in an OS-independent way, create logging directory etc. Upon import, all the variables are set.
This is imported first by pyfdax, logger cannot be used yet. Hence, messages are printed to the console.

pyfda.libs.pyfda_dirs.CONF_FILE = 'pyfda.conf'

name for general configuration file

pyfda.libs.pyfda_dirs.HOME_DIR = '/home/docs'

Home dir and user name

pyfda.libs.pyfda_dirs.LOG_CONF_FILE = 'pyfda_log.conf'

name for logging configuration file

pyfda.libs.pyfda_dirs.LOG_DIR_FILE = '/tmp/.pyfda/pyfda_20240409-112853.log'

Name of the log file, can be changed in pyfdax.py

pyfda.libs.pyfda_dirs.TEMP_DIR = '/tmp'

Temp directory for constructing logging dir

pyfda.libs.pyfda_dirs.USER_DIRS = []

Placeholder for user widgets directory list, set by treebuilder

pyfda.libs.pyfda_dirs.USER_NAME = ''

Home dir and user name

pyfda.libs.pyfda_dirs.copy_conf_files(force_copy=False, logger=None)
If they don’t exist, create pyfda.conf und pyfda_log.conf from template files. in the user directory where
they can be edited by the user without admin rights. If they exist and force_copy=True, make a backup of
the old files and then overwrite them.

Parameters
• force_copy (bool) – When True, make a backup and overwrite existing config files.

• logger (logger instance) – Write info and error messages to logger when it exists,
otherwise use print(). When called during the initial phase, loggers have not been created
yet and print() has to be used.

Return type
None.

pyfda.libs.pyfda_dirs.env(name)
Get value for environment variable name from the OS.

Parameters
name (str) – environment variable

Returns
value of environment variable

Return type
str

pyfda.libs.pyfda_dirs.get_conf_dir()

Return the user’s configuration directory

pyfda.libs.pyfda_dirs.get_home_dir()

Return the user’s home directory and name

46 Chapter 3. Development

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pyfda Documentation, Release v0.9.0b1

pyfda.libs.pyfda_dirs.get_log_dir()

Try different OS-dependent locations for creating log files and return the first suitable directory name. Only
called once at startup.

see https://stackoverflow.com/questions/847850/cross-platform-way-of-getting-temp-directory-in-python

pyfda.libs.pyfda_dirs.get_yosys_dir()

Try to find YOSYS path and version from environment variable or path:

pyfda.libs.pyfda_dirs.last_file_dir = '/home/docs'

Place holder for file type selected (e.g. “csv”) in last file dialog

pyfda.libs.pyfda_dirs.last_file_name = ''

Place holder for storing the directory location of the last file

pyfda.libs.pyfda_dirs.last_file_type = ''

Global handle to pop-up window for CSV options - this window must be closed before opening another pop-
up window! Otherwise, the second window becomes unaccessible (?) and pyfda becomes unresponsive.

pyfda.libs.pyfda_dirs.update_conf_files(logger)
Copy templates to user config and logging config files, making backups of the old versions.

pyfda.libs.pyfda_dirs.valid(path)
Check whether path exists and is valid

3.4.2 pyfda.libs.tree_builder

Create the tree dictionaries containing information about filters, filter implementations, widgets etc. in hierarchical
form

exception pyfda.libs.tree_builder.ParseError

class pyfda.libs.tree_builder.Tree_Builder

Read the config file and construct dictionary trees with

• all filter combinations

• valid combinations of filter widgets and fixpoint implementations

build_class_dict(section, subpackage='')

• Try to dynamically import the modules (= files) parsed in section reading their module level at-
tribute classes listing the classes contained in the module.

When classes is a dictionary, e.g. {“Cheby”:”Chebyshev 1”} where the key is the class name in
the module and the value the corresponding display name (used for the combo box).

• When classes is a string or a list, use the string resp. the list items for both class and display name.

• Try to import the filter classes

Parameters
• section (str) – Name of the section in the configuration file to be parsed by self.
parse_conf_section.

• subpackage (str) – Name of the subpackage containing the module to be imported.
Module names are prepended successively with [‘pyfda.’ + subpackage + ‘.’, ‘’, sub-
package + ‘.’]

Returns
• classes_dict (dict)

• A dictionary with the classes as keys; values are dicts which define

3.4. Main Routines 47

https://stackoverflow.com/questions/847850/cross-platform-way-of-getting-temp-directory-in-python
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pyfda Documentation, Release v0.9.0b1

• the options (like display name, module path, fixpoint implementations etc).

• Each entry has the form e.g.

• {<class name> ({‘name’:<display name>, ‘mod’:<full module name>}} e.g.)

• .. code-block:: python –

{‘Cheby1’:{‘name’:’Chebyshev 1’,
’mod’:’pyfda.filter_design.cheby1’, ‘fix’: ‘IIR_cascade’, ‘opt’: [“option1”, “op-
tion2”]}

build_fil_tree(fc, rt_dict, fil_tree=None)
Read attributes (ft, rt, rt:fo) from filter class fc) Attributes are stored in the design method classes in
the format (example from common.py)

self.ft = 'IIR'
self.rt_dict = {

'LP': {'man':{'fo': ('a','N'),
'msg': ('a', r"
Note: Read this!"),
'fspecs': ('a','F_C'),
'tspecs': ('u', {'frq':('u','F_PB','F_SB'),

'amp':('u','A_PB','A_SB')})
},

'min':{'fo': ('d','N'),
'fspecs': ('d','F_C'),
'tspecs': ('a', {'frq':('a','F_PB','F_SB'),

'amp':('a','A_PB','A_SB')})
}

},
'HP': {'man':{'fo': ('a','N'),

'fspecs': ('a','F_C'),
'tspecs': ('u', {'frq':('u','F_SB','F_PB'),

'amp':('u','A_SB','A_PB')})
},

'min':{'fo': ('d','N'),
'fspecs': ('d','F_C'),
'tspecs': ('a', {'frq':('a','F_SB','F_PB'),

'amp':('a','A_SB','A_PB')})
}

}
}

Build a dictionary of all filter combinations with the following hierarchy:

response types -> filter types -> filter classes -> filter order rt (e.g. ‘LP’) ft (e.g. ‘IIR’) fc (e.g. ‘cheby1’)
fo (‘min’ or ‘man’)

All attributes found for fc are arranged in a dict, e.g. for cheby1.LPman and cheby1.LPmin, listing the
parameters to be displayed and whether they are active, unused, disabled or invisible for each subwidget:

'LP':{
'IIR':{

'Cheby1':{
'man':{'fo': ('a','N'),

'msg': ('a', r"
Note: Read this!"),
'fspecs': ('a','F_C'),
'tspecs': ('u', {'frq':('u','F_PB','F_SB'),

'amp':('u','A_PB','A_SB')})
},

(continues on next page)

48 Chapter 3. Development

pyfda Documentation, Release v0.9.0b1

(continued from previous page)

'min':{'fo': ('d','N'),
'fspecs': ('d','F_C'),
'tspecs': ('a', {'frq':('a','F_PB','F_SB'),

'amp':('a','A_PB','A_SB')})
}

}
}

}, ...

Finally, the whole structure is frozen recursively to avoid inadvertedly changing the filter tree.

For a full example, see the default filter tree fb.fil_tree defined in filterbroker.py.

Parameters
None –

Returns
filter tree

Return type
dict

init_filters()

Run at startup to populate global dictionaries and lists:

• Read attributes (ft, rt, fo) from all valid filter classes (fc) in the global dict fb.filter_classes
and store them in the filter tree dict fil_tree with the hierarchy

rt-ft-fc-fo-subwidget:params .

Parameters
None –

Returns
• fb.fil_tree :

Return type
None, but populates the following global attributes

parse_conf_file()

Parse the configuration file pyfda.conf (specified in dirs.USER_CONF_DIR_FILE). This is run only
once at instantiation.

This is performed using build_class_dict() which calls parse_conf_section():

• Try to find and import the modules specified in the corresponding sections

• Extract and import the classes defined in each module and give back an OrderedDict with the
successfully imported classes and their options (like fully qualified module names, display name,
associated fixpoint widgets etc.).

• Information for each section is stored in globally accessible OrderdDicts like`fb.filter_classes`.

The following sections are analyzed:

[Commons]
Try to find user directories; if they exist add them to dirs.USER_DIRS and sys.path

For the other sections, OrderedDicts are returned with the class names as keys and dictionaries with
options as values.

[Input Widgets]
Store (user) input widgets in fb.input_classes

3.4. Main Routines 49

https://docs.python.org/3/library/stdtypes.html#dict

pyfda Documentation, Release v0.9.0b1

[Plot Widgets]
Store (user) plot widgets in fb.plot_classes

[Filter Widgets]
Store (user) filter widgets in fb.filter_classes

[Fixpoint Widgets]
Store (user) fixpoint widgets in fb.fixpoint_classes

Parameters
None –

Return type
None, but self.conf contains the parsed configuration file.

parse_conf_section(section)
Parse section in config file conf and return an OrderedDict with the elements {key:<OPTION>}
where key and <OPTION> have been read from the config file. <OPTION> has been sanitized and
converted to a list or a dict.

Parameters
section (str) – name of the section to be parsed

Returns
section_conf_dict – Ordered dict with the keys of the config files and corresponding
values

Return type
dict

pyfda.libs.tree_builder.merge_dicts_hierarchically(d1, d2, path=None, mode='keep1')
Merge the hierarchical dictionaries d1 and d2. The dict d1 is modified in place and returned

Parameters
• d1 (dict) – hierarchical dictionary 1

• d2 (dict) – hierarchical dictionary 2

• mode (str) – Select the behaviour when the same key is present in both dictionaries:

– ’keep1’
keep the entry from d1 (default)

– ’keep2’
keep the entry from d2

– ’add1’
merge the entries, putting the values from d2 first (important for lists)

– ’add2’
merge the entries, putting the values from d1 first (“)

• path (str) – internal parameter for keeping track of hierarchy during recursive calls, it
should not be set by the user

Returns
d1 – a reference to the first dictionary, merged-in-place.

Return type
dict

50 Chapter 3. Development

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

pyfda Documentation, Release v0.9.0b1

Example

>>> merge_dicts_hierarchically(fil_tree, fil_tree_add, mode='add1')

Notes

If you don’t want to modify d1 in place, call the function using:

>>> new_dict = merge_dicts_hierarchically(dict(d1), d2)

If you need to merge more than two dicts use:

>>> from functools import reduce # only for py3
>>> reduce(merge, [d1, d2, d3...]) # add / merge all other dicts into d1

Taken with some modifications from:

http://stackoverflow.com/questions/7204805/dictionaries-of-dictionaries-merge

3.4.3 pyfda.libs.pyfda_lib

3.4.4 pyfda.filter_factory

Dynamic parameters and settings are exchanged via the dictionaries in this file. Importing filterbroker.py runs
the module once, defining all module variables which have a global scope like class variables and can be imported
like

>>> import filter_factory as ff
>>> myfil = ff.fil_factory

class pyfda.filter_factory.FilterFactory

This class implements a filter factory that (re)creates the globally accessible filter instance fil_inst from
module path and class name, passed as strings.

call_fil_method(method, fil_dict, fc=None)
Instantiate the filter design class passed as string fc with the globally accessible handle fil_inst. If
fc = None, use the previously instantiated filter design class.

Next, call the design method passed as string method of the instantiated filter design class.

Parameters
• method (string) – The name of the design method to be called (e.g. ‘LPmin’)

• fil_dict (dictionary) – A dictionary with all the filter specs that is passed to
the actual filter design routine. This is usually a copy of fb.fil[0] The results
of the filter design routine are written back to the same dict.

• fc (string (optional, default: None)) – The name of the filter design
class to be instantiated. When nothing is specified, the last filter selection is used.

Returns
err_code –

one of the following error codes:
-1

filter design operation has been cancelled by user

0
filter design method exists and is callable

3.4. Main Routines 51

http://stackoverflow.com/questions/7204805/dictionaries-of-dictionaries-merge

pyfda Documentation, Release v0.9.0b1

16
passed method name is not a string

17
filter design method does not exist in class

18
filter design error containing “order is too high”

19
filter design error containing “failure to converge”

99
unknown error

Return type
int

Examples

>>> call_fil_method("LPmin", fil[0], fc="cheby1")

The example first creates an instance of the filter class ‘cheby1’ and then performs the actual filter
design by calling the method ‘LPmin’, passing the global filter dictionary fil[0] as the parameter.

create_fil_inst(fc, mod=None)
Create an instance of the filter design class passed as a string fc from the module found in fb.
filter_classes[fc]. This dictionary has been collected by tree_builder.py.

The instance can afterwards be globally referenced as fil_inst.

Parameters
• fc (str) – The name of the filter design class to be instantiated (e.g. ‘cheby1’ or

‘equiripple’)

• mod (str (optional, default = None)) – Fully qualified name of the
filter module. When not specified, it is read from the global dict fb.
filter_classes[fc]['mod']

Returns
err_code –

one of the following error codes:
-1

filter design class was instantiated successfully

0
filter instance exists, no re-instantiation necessary

1
filter module not found by FilterTreeBuilder

2
filter module found by FilterTreeBuilder but could not be imported

3
filter class could not be instantiated

4
unknown error during instantiation

Return type
int

52 Chapter 3. Development

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

pyfda Documentation, Release v0.9.0b1

Examples

>>> create_fil_instance('cheby1')
>>> fil_inst.LPmin(fil[0])

The example first creates an instance of the filter class ‘cheby1’ and then performs the actual filter
design by calling the method ‘LPmin’, passing the global filter dictionary fil[0] as the parameter.

pyfda.filter_factory.fil_factory = <pyfda.filter_factory.FilterFactory object>

Class instance of FilterFactory that can be accessed in other modules

pyfda.filter_factory.fil_inst = None

Instance of current filter design class (e.g. “cheby1”), globally accessible

>>> import filter_factory as ff
>>> ff.fil_factory.create_fil_instance('cheby1') # create instance of dynamic␣
→˓class
>>> ff.fil_inst.LPmin(fil[0]) # design a filter

3.4.5 pyfda.filterbroker

Dynamic parameters and settings are exchanged via the dictionaries in this file. Importing filterbroker.py runs
the module once, defining all module variables which have a global scope like class variables and can be imported
like

>>> import filterbroker as fb
>>> myfil = fb.fil[0]

The entries in this file are only used as initial / default entries and to demonstrate the structure of the global dicts
and lists. These initial values are also handy for module-level testing where some useful settings of the variables
is required.

Notes

Alternative approaches for data persistence could be the packages shelve or pickleshare More info on data persis-
tence and storing / accessing global variables:

• http://stackoverflow.com/questions/13034496/using-global-variables-between-files-in-python

• http://stackoverflow.com/questions/1977362/how-to-create-module-wide-variables-in-python

• http://pymotw.com/2/articles/data_persistence.html

• http://stackoverflow.com/questions/9058305/getting-attributes-of-a-class

• http://stackoverflow.com/questions/2447353/getattr-on-a-module

pyfda.filterbroker.base_dir = ''

Project base directory

pyfda.filterbroker.clipboard = None

Handle to central clipboard instance

3.4. Main Routines 53

http://stackoverflow.com/questions/13034496/using-global-variables-between-files-in-python
http://stackoverflow.com/questions/1977362/how-to-create-module-wide-variables-in-python
http://pymotw.com/2/articles/data_persistence.html
http://stackoverflow.com/questions/9058305/getting-attributes-of-a-class
http://stackoverflow.com/questions/2447353/getattr-on-a-module

pyfda Documentation, Release v0.9.0b1

pyfda.filterbroker.filter_classes = {'Bessel': {'mod':
'pyfda.filter_widgets.bessel', 'name': 'Bessel'}, 'Butter': {'mod':
'pyfda.filter_widgets.butter', 'name': 'Butterworth'}, 'Cheby1': {'mod':
'pyfda.filter_widgets.cheby1', 'name': 'Chebyshev 1'}, 'Cheby2': {'mod':
'pyfda.filter_widgets.cheby2', 'name': 'Chebyshev 2'}, 'Ellip': {'mod':
'pyfda.filter_widgets.ellip', 'name': 'Elliptic'}, 'EllipZeroPhz': {'mod':
'pyfda.filter_widgets.ellip_zero', 'name': 'EllipZeroPhz'}, 'Equiripple': {'mod':
'pyfda.filter_widgets.equiripple', 'name': 'Equiripple'}, 'Firwin': {'mod':
'pyfda.filter_widgets.firwin', 'name': 'Windowed FIR'}, 'MA': {'mod':
'pyfda.filter_widgets.ma', 'name': 'Moving Average'}, 'Manual_FIR': {'mod':
'pyfda.filter_widgets.manual', 'name': 'Manual'}, 'Manual_IIR': {'mod':
'pyfda.filter_widgets.manual', 'name': 'Manual'}}

The keys of this dictionary are the names of all found filter classes, the values are the name to be displayed
e.g. in the comboboxes and the fully qualified name of the module containing the class.

pyfda.filterbroker.redo()

Store current filter to undo memory fil_undo

pyfda.filterbroker.undo()

Restore current filter from undo memory fil_undo

3.4.6 pyfda.libs.pyfda_io_lib

3.5 Libraries

pyfda contains the following libraries:

• pyfda_lib: General functions

• pyfda_sig_lib: Functions related to signal processing

• pyfda_qt_lib: Functions related to Qt

• pyfda_io_lib: Functions related to file I/O

• pyfda_fix_lib: Fixpoint classes and functions

3.5.1 pyfda_lib

3.5.2 pyfda_sig_lib

3.5.3 pyfda_qt_lib

3.5.4 pyfda_io_lib

3.5.5 pyfda_fix_lib

3.6 Package input_widgets

This package contains the widgets for entering / selecting parameters for the filter design.

54 Chapter 3. Development

pyfda Documentation, Release v0.9.0b1

3.6.1 input_tab_widgets

3.6.2 input_specs

3.6.3 select_filter

3.6.4 input_coeffs

3.6.5 input_pz

3.6.6 input_info

3.6.7 input_fixpoint_specs

The configuration file libs.pyfda_template.conf lists which fixpoint classes (e.g. FIR_DF and IIR_DF1) can be
used with which filter design algorithm. libs.tree_builder parses this file and writes all fixpoint modules into the
list fb.fixpoint_widgets_list. The input widget pyfda.input_widgets.input_fixpoint_specs constructs a
combo box from this list with references to all successfully imported fixpoint modules. The currently selected
fixpoint widget (e.g. FIR_DF) is imported from Package fixpoint_widgets together with the referenced picture.

Each fixpoint module / class contains a widget that is constructed using helper classes from fix-
point_widgets.fixpoint_helpers.py. The widgets allow entering fixpoint specifications like word lengths and for-
mats for input, output and internal structures (like an accumulator) for each class. It also contains a reference to a
picture showing the filter topology.

Details of the mechanism and the module are described in input_widgets.input_fixpoint_specs.

3.7 Package plot_widgets

Package providing widgets for plotting various time and frequency dependent filter properties

3.7.1 plot_tab_widgets

3.7.2 plot_hf

3.7.3 plot_phi

3.7.4 plot_tau_g

3.7.5 plot_pz

3.7.6 plot_impz

3.7.7 plot_3d

3.8 Package filter_widgets

Package providing various algorithms for FIR and IIR filter design.

3.7. Package plot_widgets 55

pyfda Documentation, Release v0.9.0b1

3.8.1 pyfda.filter_widgets.bessel

3.9 Package fixpoint_widgets

This package contains widgets and fixpoint descriptions for simulating filter designs with fixpoint arithmetics and
for converting filter designs to Verilog using the migen library. These Verilog netlists can be synthesized e.g. on
an FPGA.

Hardware implementations for discrete-time filters usually imply fixpoint arithmetics but this could change in the
future as floating point arithmetics can be implemented on FPGAs using dedicated floating point units (FPUs).

Filter topologies are defined in the corresponding classes and can be implemented in hardware. The filter topologies
use the order and the coefficients that have been determined by a filter design algorithm from the pyfda.filter_widgets
package for a target filter specification (usually in the frequency domain). Filter coefficients are quantized according
to the settings in the fixpoint widget.

Each fixpoint module / class contains a widget that is constructed using helper classes from fixpoint_widgets.
fixpoint_helpers. The widgets allow entering fixpoint specifications like word lengths and formats for input,
output and internal structures (like an accumulator) for each class. It also contains a reference to a picture showing
the filter topology.

The configuration file pyfda.conf lists which fixpoint classes (e.g. FIR_DF and IIR_DF1) can be used with
which filter design algorithm. tree_builder parses this file and writes all fixpoint modules into the list
fb.fixpoint_widgets_list.

The widgets are selected and instantiated in the widget input_widgets.input_fixpoint_specs.

The input widget pyfda.input_widgets.input_fixpoint_specs constructs a combo box from this list with
references to all successfully imported fixpoint modules. The currently selected fixpoint widget (e.g. FIR_DF) is
imported from Package fixpoint_widgets together with the referenced picture.

First, a filter widget is instantiated as self.fx_filt_ui (after the previous one has been destroyed).

Next, fx_filt_ui.construct_fixp_filter() constructs an instance fixp_filter of a fixpoint filter class
(of e.g. pyfda.fixpoint_widgets.fir_df).

The widget’s methods

• response = fx_filt_ui.fx_filt.run_sim(stimulus)

• fx_filt_ui.fx_filt.to_verilog()

are used for bit-true simulations and for generating Verilog code for the filter.

3.9.1 input_widgets.input_fixpoint_specs

A fixpoint filter for a given filter design is selected in this widget

3.9.2 pyfda.fixpoint_widgets.fir_df

56 Chapter 3. Development

CHAPTER

FOUR

LITERATURE

References

57

pyfda Documentation, Release v0.9.0b1

58 Chapter 4. Literature

CHAPTER

FIVE

API DOCUMENTATION

5.1 pyfda – Main package

59

pyfda Documentation, Release v0.9.0b1

60 Chapter 5. API documentation

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

61

pyfda Documentation, Release v0.9.0b1

62 Chapter 6. Indices and tables

BIBLIOGRAPHY

[JOS] Julius O. Smith III, “Numerical Computation of Group Delay” in “Introduction to Digital Filters with
Audio Applications”, Center for Computer Research in Music and Acoustics (CCRMA), Stanford Uni-
versity, http://ccrma.stanford.edu/~jos/filters/Numerical_Computation_Group_Delay.html, referenced
2014-04-02,

[Lyons] Richard Lyons, “Understanding Digital Signal Processing”, 3rd Ed., Prentice Hall, 2010.

[Smith99] Steven W. Smith, “The Scientist and Engineer’s Guide to Digital Signal Processing”, 3rd Ed., 1999,
https://www.DSPguide.com

63

http://ccrma.stanford.edu/~jos/filters/Numerical_Computation_Group_Delay.html
https://www.DSPguide.com

pyfda Documentation, Release v0.9.0b1

64 Bibliography

PYTHON MODULE INDEX

p
pyfda, 59
pyfda.filter_factory, 51
pyfda.filter_widgets, 56
pyfda.filterbroker, 53
pyfda.fixpoint_widgets.fir_df, 56
pyfda.libs.pyfda_dirs, 46
pyfda.libs.tree_builder, 47

65

pyfda Documentation, Release v0.9.0b1

66 Python Module Index

INDEX

B
base_dir (in module pyfda.filterbroker), 53
build_class_dict()

(pyfda.libs.tree_builder.Tree_Builder
method), 47

build_fil_tree() (pyfda.libs.tree_builder.Tree_Builder
method), 48

C
call_fil_method() (pyfda.filter_factory.FilterFactory

method), 51
clipboard (in module pyfda.filterbroker), 53
CONF_FILE (in module pyfda.libs.pyfda_dirs), 46
copy_conf_files() (in module

pyfda.libs.pyfda_dirs), 46
create_fil_inst() (pyfda.filter_factory.FilterFactory

method), 52

E
env() (in module pyfda.libs.pyfda_dirs), 46

F
fil_factory (in module pyfda.filter_factory), 53
fil_inst (in module pyfda.filter_factory), 53
filter_classes (in module pyfda.filterbroker), 53
FilterFactory (class in pyfda.filter_factory), 51

G
get_conf_dir() (in module pyfda.libs.pyfda_dirs), 46
get_home_dir() (in module pyfda.libs.pyfda_dirs), 46
get_log_dir() (in module pyfda.libs.pyfda_dirs), 46
get_yosys_dir() (in module pyfda.libs.pyfda_dirs),

47

H
HOME_DIR (in module pyfda.libs.pyfda_dirs), 46

I
init_filters() (pyfda.libs.tree_builder.Tree_Builder

method), 49

L
last_file_dir (in module pyfda.libs.pyfda_dirs), 47
last_file_name (in module pyfda.libs.pyfda_dirs), 47
last_file_type (in module pyfda.libs.pyfda_dirs), 47

LOG_CONF_FILE (in module pyfda.libs.pyfda_dirs), 46
LOG_DIR_FILE (in module pyfda.libs.pyfda_dirs), 46

M
merge_dicts_hierarchically() (in module

pyfda.libs.tree_builder), 50
module

pyfda, 59
pyfda.filter_factory, 51
pyfda.filter_widgets, 55
pyfda.filterbroker, 53
pyfda.fixpoint_widgets.fir_df, 56
pyfda.libs.pyfda_dirs, 46
pyfda.libs.tree_builder, 47

P
parse_conf_file() (pyfda.libs.tree_builder.Tree_Builder

method), 49
parse_conf_section()

(pyfda.libs.tree_builder.Tree_Builder
method), 50

ParseError, 47
pyfda

module, 59
pyfda.filter_factory

module, 51
pyfda.filter_widgets

module, 55
pyfda.filterbroker

module, 53
pyfda.fixpoint_widgets.fir_df

module, 56
pyfda.libs.pyfda_dirs

module, 46
pyfda.libs.tree_builder

module, 47

R
redo() (in module pyfda.filterbroker), 54

T
TEMP_DIR (in module pyfda.libs.pyfda_dirs), 46
Tree_Builder (class in pyfda.libs.tree_builder), 47

U
undo() (in module pyfda.filterbroker), 54

67

pyfda Documentation, Release v0.9.0b1

update_conf_files() (in module
pyfda.libs.pyfda_dirs), 47

USER_DIRS (in module pyfda.libs.pyfda_dirs), 46
USER_NAME (in module pyfda.libs.pyfda_dirs), 46

V
valid() (in module pyfda.libs.pyfda_dirs), 47

68 Index

	pyfda
	Python Filter Design Analysis Tool
	License
	Installing, running and uninstalling pyfda
	Binaries
	pip
	Starting pyfda

	conda
	git

	Building pyfda
	Customization
	Features
	Filter design
	User Interface
	Graphical Analyses
	Modular Architecture
	Import / Export

	Why yet another filter design tool?
	Release History / Roadmap
	Planned features
	Started
	Ideas (help wanted)

	User Manual
	Input Specs
	Order
	Frequency Unit
	Amplitude Unit
	Background Info
	Sampling Frequency
	Aliasing and Nyquist Frequency

	Development

	Input Coeffs
	Quantization format
	Fixpoint
	Fixpoint Formats

	Development

	Input P/Z
	Cartesian format
	Polar format
	Saving and Loading

	Development

	Input Info
	Development

	Fixpoint Specs
	Overview
	Summation

	Configuration
	Development

	Plot H(f)
	Development

	Plot Phi(f)
	Development

	Plot tau(f)
	Development

	Plot P/Z
	Development

	Plot y[n]
	Time / Frequency (main plotting area)
	Time
	Frequency

	Plots
	Stim.
	Run
	Development

	Plot 3D
	Development

	Fixpoint Arithmetics
	Overview
	Sign extension
	Overflow behaviour
	Truncation and rounding
	Summation
	Products

	Logger Subwindow
	Customization
	pyfda.conf
	pyfda_log.conf
	pyfda_rc.py

	Development
	Software Organization
	Signalling: What’s up?
	Persistence: Where’s the data?
	Main Routines
	pyfda.libs.pyfda_dirs
	pyfda.libs.tree_builder
	pyfda.libs.pyfda_lib
	pyfda.filter_factory
	pyfda.filterbroker
	pyfda.libs.pyfda_io_lib

	Libraries
	pyfda_lib
	pyfda_sig_lib
	pyfda_qt_lib
	pyfda_io_lib
	pyfda_fix_lib

	Package input_widgets
	input_tab_widgets
	input_specs
	select_filter
	input_coeffs
	input_pz
	input_info
	input_fixpoint_specs

	Package plot_widgets
	plot_tab_widgets
	plot_hf
	plot_phi
	plot_tau_g
	plot_pz
	plot_impz
	plot_3d

	Package filter_widgets
	pyfda.filter_widgets.bessel

	Package fixpoint_widgets
	input_widgets.input_fixpoint_specs
	pyfda.fixpoint_widgets.fir_df

	Literature
	API documentation
	pyfda – Main package

	Indices and tables
	Bibliography
	Python Module Index
	Index

